【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.010.05.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為16萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.02.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若ab兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.

1)若選擇生產(chǎn)線②,求生產(chǎn)成本恰好為20萬元的概率;

2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說明理由.

【答案】1;(2)選生產(chǎn)線②;答案見解析.

【解析】

1)根據(jù)生產(chǎn)線②的條件,直接計(jì)算,可得結(jié)果.

(2)分別計(jì)算生產(chǎn)線①,生產(chǎn)線②增加的生產(chǎn)成本的數(shù)學(xué)期望,然后進(jìn)行比較,可得結(jié)果.

1)若選擇生產(chǎn)線②,生產(chǎn)成本恰好為20萬元,

a工序不出現(xiàn)故障b工序出現(xiàn)故障,

故生產(chǎn)成本恰好為20萬元的概率為.

2)若選擇生產(chǎn)線①,設(shè)增加的生產(chǎn)成本為(萬元),則的可能取值為02,3,5.

,

,

.

所以(萬元),

故選生產(chǎn)線①的生產(chǎn)成本期望值為(萬元).

若選生產(chǎn)線②,設(shè)增加的生產(chǎn)成本為,則的可能取值為0,8,5,13.

,

,

,

.

所以(萬元),

選生產(chǎn)線②的生產(chǎn)成本期望值為(萬元),

故應(yīng)選生產(chǎn)線②.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是拋物線上的兩個(gè)不同的點(diǎn),是坐標(biāo)原點(diǎn),若直線的斜率之積為,則下列結(jié)論正確的是(

A.

B.為直徑的圓面積的最小值為

C.直線過拋物線的焦點(diǎn)

D.點(diǎn)到直線的距離不大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形中,,,,,上的點(diǎn),,的中點(diǎn).將沿折起到的位置,使得,如圖2

1)求證:平面平面;

2)點(diǎn)在線段上,當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Keep是一款具有社交屬性的健身APP,致力于提供健身教學(xué)、跑步、騎行、交友及健身飲食指導(dǎo)、裝備購(gòu)買等一站式運(yùn)動(dòng)解決方案.Keep可以讓你隨時(shí)隨地進(jìn)行鍛煉,記錄你每天的訓(xùn)練進(jìn)程.不僅如此,它還可以根據(jù)不同人的體質(zhì),制定不同的健身計(jì)劃.小明根據(jù)Keep記錄的20191月至201911月期間每月跑步的里程(單位:十公里)數(shù)據(jù)整理并繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是(

A.月跑步里程最小值出現(xiàn)在2

B.月跑步里程逐月增加

C.月跑步里程的中位數(shù)為5月份對(duì)應(yīng)的里程數(shù)

D.1月至5月的月跑步里程相對(duì)于6月至11月波動(dòng)性更小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年底開始,非洲東部的肯尼亞等國(guó)家爆發(fā)出了一場(chǎng)嚴(yán)重的蝗蟲災(zāi)情.目前,蝗蟲已抵達(dá)烏干達(dá)和坦桑尼亞,并向西亞和南亞等地區(qū)蔓延.蝗蟲危害大,主要危害禾本科植物,能對(duì)農(nóng)作物造成嚴(yán)重傷害,每只蝗蟲的平均產(chǎn)卵數(shù)和平均溫度有關(guān),現(xiàn)收集了以往某地的組數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

平均溫度

平均產(chǎn)卵數(shù)個(gè)

表中,.

1)根據(jù)散點(diǎn)圖判斷,(其中為自然對(duì)數(shù)的底數(shù))哪一個(gè)更適宜作為平均產(chǎn)卵數(shù)關(guān)于平均溫度的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出關(guān)于的回歸方程.(結(jié)果精確到小數(shù)點(diǎn)后第三位)

2)根據(jù)以往統(tǒng)計(jì),該地每年平均溫度達(dá)到以上時(shí)蝗蟲會(huì)造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達(dá)到以上的概率為.

①記該地今后年中,恰好需要次人工防治的概率為,求取得最大值時(shí)相應(yīng)的概率;

②根據(jù)①中的結(jié)論,當(dāng)取最大值時(shí),記該地今后年中,需要人工防治的次數(shù)為,求的數(shù)學(xué)期望和方差.

附:對(duì)于一組數(shù)據(jù)、、,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱臺(tái)中,底面是菱形,底面,且60°,,是棱的中點(diǎn).

1)求證:;

2)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新冠病毒疫情爆發(fā)期間,口罩成為了個(gè)人的必需品.已知某藥店有4種不同類型的口罩,,,其中型口罩僅剩1只(其余3種庫存足夠).今甲、乙等5人先后在該藥店各購(gòu)買了1只口罩,統(tǒng)計(jì)發(fā)現(xiàn)他們恰好購(gòu)買了3種不同類型的口罩,則所有可能的購(gòu)買方式共有(

A.330B.345C.360D.375

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)數(shù).

(1)求的最值;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)).證明:

1存在唯一的極值點(diǎn);

2有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為相反數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案