已知a、b為直線,α、β為平面.在下列四個(gè)命題中,
①若a⊥α,b⊥α,則a∥b;  ②若 a∥α,b∥α,則a∥b;
③若a⊥α,a⊥β,則α∥β;   ④若α∥b,β∥b,則α∥β.
正確命題的個(gè)數(shù)是( )
A.1
B.3
C.2
D.0
【答案】分析:由“垂直于同一平面的兩直線平行”知①真;
由“平行于同一平面的兩直線平行或異面或相交”知②假;
由“垂直于同一直線的兩平面平行”知③真;
對(duì)于④,可以舉反例排除.
解答:解:由“垂直于同一平面的兩直線平行”知①真;
由“平行于同一平面的兩直線平行或異面或相交”知②假;
由“垂直于同一直線的兩平面平行”知③真;
在長(zhǎng)方體中可以找到不滿足要求的平面和直線,易知④假,
故選  C.
點(diǎn)評(píng):本題是對(duì)空間中直線與直線之間的關(guān)系,直線與平面之間的關(guān)系以及平面和平面之間關(guān)系的綜合考查.是考查基礎(chǔ)知識(shí)的基礎(chǔ)題,須注重對(duì)課本概念的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知a,b為直線,α,β,γ為平面,①a⊥α,b⊥α,則a∥b;②a⊥α,b⊥β,a∥b,則α∥β;③γ⊥α,γ⊥β,則α∥β;④a⊥α,α⊥β,則a∥β.以上結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知a、b為直線,α、β為平面.在下列四個(gè)命題中,
①若a⊥α,b⊥α,則a∥b;  ②若 a∥α,b∥α,則a∥b;
③若a⊥α,a⊥β,則α∥β;   ④若α∥b,β∥b,則α∥β.
正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b為直線,α,β,γ為平面,有下列四個(gè)命題:
①a∥α,b∥α,則a∥b       
②α⊥β,β⊥γ,則α∥β
③a∥α,a∥β,則α∥β      
④a∥b,b?α,則a∥α
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

其中正確命題的個(gè)數(shù)是
0
0

已知a、b為直線,α,β,γ為平面,有下列四個(gè)命題:
①a∥α,b∥α,則a∥b       ②α⊥γ,β⊥γ,則α∥β
③a∥α,α∥β,則α∥β       ④a∥b,b?α,則a∥α
其中正確命題的個(gè)數(shù)是
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧市高三第一次調(diào)研考試數(shù)學(xué)理卷 題型:選擇題

已知a、b為直線,α、β為平面.在下列四個(gè)命題中,                       

       ①  若a⊥α,b⊥α,則ab ;                ②  若 a∥α,b ∥α,則ab

       ③  若a⊥α,a⊥β,則α∥β;                  ④  若α∥b,β∥b ,則α∥β.

正確命題的個(gè)數(shù)是                                                                                          (    )

      A. 1                    B. 3                      C. 2                     D. 0

 

查看答案和解析>>

同步練習(xí)冊(cè)答案