已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設k>1,解關于x的不等式;
【答案】分析:(1)將得出關于a,b的方程組,解之即得a,b,從而得出函數(shù)f(x)的解析式.
(2)不等式即為:即(x-2)(x-1)(x-k)>0.下面對k進行分類討論:①當1<k<2,②當k=2時,③當k>2時,分別求出此不等式的解集即可.
解答:解:(1)將
(2)不等式即為
即(x-2)(x-1)(x-k)>0.
①當1<k<2,解集為x∈(1,k)∪(2,+∞).
②當k=2時,不等式為(x-2)2(x-1)>0解集為x∈(1,2)∪(2,+∞);
③當k>2時,解集為x∈(1,2)∪(k,+∞).
點評:本題主要是應用分類討論思想解決不等式問題,關鍵是正確地進行分類,而分類一般有以下幾個原則:
1.要有明確的分類標準;
2.對討論對象分類時要不重復、不遺漏,即分成若干類,其并集為全集,兩兩的交集為空集;
3.當討論的對象不止一種時,應分層次進行,以避免混亂.根據(jù)絕對值的意義判斷出f(x)的奇偶性,再利用偶函數(shù)的圖象關于y軸對稱,求出函數(shù)在(0,+∞)上的單調區(qū)間,并且只要求出當x>0時,函數(shù)f(x)=x2-2ax(a>0)最小值進而利用f(x)min≤-1解答此題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:全優(yōu)設計必修五數(shù)學蘇教版 蘇教版 題型:013

已知Sk為數(shù)列{an}的前k項和,且Sk+Sk+1=ak+1(k∈N+).那么此數(shù)列是

[  ]

A.單調增數(shù)列

B.單調減函數(shù)

C.常數(shù)列

D.擺動數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:高考總復習全解 數(shù)學 一輪復習·必修課程。ㄈ私虒嶒灠妫版 人教實驗版 B版 題型:022

(1)已知x,函數(shù)y=4x-2+的最大值為________.

(2)已知x>0,y>0,且,x+y的最小值為________.

(3)已知a、b為常實數(shù),函數(shù)y=(x-a)2+(x-b)2的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知Sk為數(shù)列{an}的前k項和,且Sk+Sk+1=ak+1(k∈N+).那么此數(shù)列是


  1. A.
    單調增數(shù)列
  2. B.
    單調減函數(shù)
  3. C.
    常數(shù)列
  4. D.
    擺動數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:單選題

已知函數(shù)f(x)的定義域為A,如果對于屬于定義域內某個區(qū)間I上的任意兩個不同的自變量x1,x2,都有,則
[     ]
A.f(x)在這個區(qū)間上為增函數(shù)
B.f(x)在這個區(qū)間上為減函數(shù)
C.f(x)在這個區(qū)間上的增減性不變
D.f(x)在這個區(qū)間上為常函數(shù)

查看答案和解析>>

同步練習冊答案