已知函數(shù)()
(1)若曲線在點處的切線平行于軸,求的值;
(2)當(dāng)時,若直線與曲線在上有公共點,求的取值范圍.
(1);(2).
解析試題分析: (1)由導(dǎo)數(shù)的幾何意義,在處的導(dǎo)函數(shù)值,等于在該點的切線的斜率;
(2)兩曲線在上有公共點,即在上有解,從而,將表示成的函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,達到確定的范圍之目的.
試題解析:(1),因為在處的切線平行于軸,所以,,
即;
(2)時,,依題意可令在上有解,
整理得,令,,
,單調(diào)遞增;
,單調(diào)遞減,則,故.
考點:導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中),且方程的兩個根分別為、.
(1)當(dāng)且曲線過原點時,求的解析式;
(2)若在無極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,求實數(shù)的取值范圍;
(Ⅲ)令若至少存在一個實數(shù),使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,總成立,求實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),,過點作函數(shù)圖象的所有切線,令各切點得橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com