x、y滿足約束條件數(shù)學公式,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為7,則數(shù)學公式的最小值為


  1. A.
    14
  2. B.
    7
  3. C.
    18
  4. D.
    13
B
分析:作出可行域,得到目標函數(shù)z=ax+by(a>0,b>0)的最優(yōu)解,從而得到3a+4b=7,利用基本不等式即可.
解答:解:∵x、y滿足約束條件,目標函數(shù)z=ax+by(a>0,b>0),作出可行域:
由圖可得,可行域為△ABC區(qū)域,目標函數(shù)z=ax+by(a>0,b>0)經(jīng)過可行域內(nèi)的點C時,取得最大值(最優(yōu)解).
解得x=3,y=4,即C(3,4),
∵目標函數(shù)z=ax+by(a>0,b>0)的最大值為7,
∴3a+4b=7(a>0,b>0),
=(3a+4b)•(
=(9++16+)≥(25+2)=×49=7(當且僅當a=b=1時取“=”).
故選B.
點評:本題考查線性規(guī)劃,作出線性約束條件下的可行域,求得其最優(yōu)解是關鍵,也是難點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x、y滿足約束條件
x+y≤3
y≤x-1
y≥0
,則z=x2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
x-2y-1
y-2
的取值范圍是(  )
A、[-
9
4
,-
1
2
]
B、(-∞,-
9
4
]∪[-
1
2
,+∞)
C、(-
9
4
,-
1
2
)
D、(-∞,-
9
4
)∪(-
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件
x≥1
y≥
1
2
x
2x+y≤10
,則z=2x-y的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件
x+y+5≥0
x-y≤0
y≤0
,則z=2x+4y的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件:
x+y≥3
x-y≥-1
2x-y≤3
.則目標函數(shù)z=2x+3y的最小值為( 。

查看答案和解析>>

同步練習冊答案