在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(Ⅱ)試判斷是否有97.5%的把握認為“休閑方式與性別有關”?
下面臨界值表僅供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)2
,其中n=a+b+c+d)
考點:獨立性檢驗的應用
專題:應用題,概率與統(tǒng)計
分析:(1)根據(jù)共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.得到列聯(lián)表.
(2)根據(jù)列聯(lián)表中所給的數(shù)據(jù)做出觀測值,把觀測值同臨界值進行比較得到有97.5%的把握認為性別與休閑方式有關系.
解答: 解:(1)由所給的數(shù)據(jù)得到列聯(lián)表
休閑方式
性別
看電視        運動   合計
       43          27 70
          男        21          33 54
         合計        64          60 124
(2)假設休閑與性別無關,
K2=
124×(43×33-27×21)2
70×54×64×60
=6.201
∵K2>5.024,
∴有97.5%的把握認為“休閑方式與性別有關”.
點評:獨立性檢驗是考查兩個分類變量是否有關系,并且能較精確的給出這種判斷的可靠程度的一種重要的統(tǒng)計方法,主要是通過k2的觀測值與臨界值的比較解決的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
A1P
A1B

(Ⅰ)當λ=
1
2
時,求直線PN與平面ABC所成的角θ的正弦值;
(Ⅱ)若平面PMN與平面ABC所成的角為45°,試確定點P的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某運輸裝置如圖所示,其中鋼結構ABD是AB=BD=l,∠B=
π
3
的固定裝置,AB上可滑動的點C使CD垂直與底面(C不A,B與重合),且CD可伸縮(當CD伸縮時,裝置ABD隨之繞D在同一平面內(nèi)旋轉),利用該運輸裝置可以將貨物從地面D處沿D→C→A運送至A處,貨物從D處至C處運行速度為v,從C處至A處運行速度為3v.為了使運送貨物的時間t最短,需在運送前調整運輸裝置中∠DCB=θ的大。
(1)當θ變化時,試將貨物運行的時間t表示成θ的函數(shù)(用含有v和l的式子);
(2)當t最小時,C點應設計在AB的什么位置?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的導數(shù):
(Ⅰ)y=
2
3
x3+log2x;
(Ⅱ)y=xtan2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩個數(shù)學興趣小組,每組3位同學,求一道數(shù)學題,甲組同學做對概率均為0.7,乙組均為0.6.
(1)求甲組中至少有兩位做對這道題的概率;
(2)求甲、乙兩隊中各有兩位同學做對這道數(shù)學題的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=a+bi(a、b∈R),
.
z
是z的共軛復數(shù),且
.
z
=(2+i)(3-i),則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點A(3,-2)的直線l交x軸正半軸于點B,交直線l1:x-2y=0于點C,且|AB|=2|BC|,則直線l在y軸上的截距是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知b=50
3
,c=150,∠B=30°,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
-5
2-i
的共軛復數(shù)是
 

查看答案和解析>>

同步練習冊答案