已知函數(shù),設曲線在與軸交點處的切線為,的導函數(shù),滿足

(1)求;

(2)設,,求函數(shù)上的最大值;

(3)設,若對于一切,不等式恒成立,求實數(shù)的取值范圍.

 

【答案】

(1);(2) ;(3)

【解析】

試題分析:(1)三次函數(shù)的導數(shù)是二次函數(shù),由,知其對稱軸,曲線的切線問題,可利用導數(shù)的幾何意義(切點處切線的斜率)列出方程組求解;(2),畫出函數(shù)圖象考察其單調性,根據(jù)其單調區(qū)間對的值分類討論求出其最大值;(3)對不等式進行化簡,得恒成立,即,且,對任意的成立,然后又轉化為求函數(shù)的最值問題,要注意,從而有.

試題解析:(1),∵

∴函數(shù)的圖象關于直線對稱,,       2分

∵曲線在與軸交點處的切線為,∴切點為

,解得,則        5分

(2)∵,

,其圖象如圖           7分

時,,

時,

時,

綜上                 10分

(3),

時,,所以不等式等價于恒成立,

解得,且,                      13分

,得,,所以,

,∵ ,∴所求的實數(shù)的的取值范圍是    16分

考點:函數(shù)與導數(shù)、曲線的切線、不等式恒成立問題.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆江蘇省啟東市高三上學期第一次檢測文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),設曲線在與軸交點處的切線為的導函數(shù),滿足

(1)求

(2)設,,求函數(shù)上的最大值;

(3)設,若對于一切,不等式恒成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省高三下學期回頭考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),設曲線在與軸交點處的切線為的導函數(shù),滿足

(1)求的單調區(qū)間.

(2)設,,求函數(shù)上的最大值;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省深圳市高三第一次調研理科數(shù)學 題型:解答題

(本小題滿分14分)

已知函數(shù),設曲線在與軸交點處的切線為

,的導函數(shù),滿足

(1)求;

(2)設,,求函數(shù)上的最大值;

(3)設,若對一切,不等式恒成立,求實數(shù)的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù),設曲線在與x軸交點處的切線為,的導函數(shù),滿足

(1)求;

(2)設m>0,求函數(shù)在[0,m]上的最大值;

(3)設,若對于一切,不等式恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案