過雙曲線
x2
16
-
y2
9
=1的左焦點F1的直線交在雙曲線一支的弦長AB為6,另一焦點為F2,求△ABF2的周長.
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:利用雙曲線的定義可得|AF2|-|AF1|=8,|BF2|-|AF1|=8,結合|AF1|+|BF1|=|AB|=6,即可求得△ABF2的周長.
解答: 解:∵|AF2|-|AF1|=8,|BF2|-|AF1|=8,
∴(|AF2|-|AF1|)+(|BF2|-|BF1|)=16,
又|AF1|+|BF1|=|AB|=6,
∴|AF2|+|BF2|=16+(|AF1|+|BF1|)=16+6,
∴△ABF2的周長等于|AF2|+|BF2|+|AB|=28.
點評:本題考查雙曲線的簡單性質,掌握雙曲線的定義是解決問題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線F:
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2
為雙曲線F的焦點.若雙曲線F存在點M,滿足
1
2
|MF1|=|MO|=|MF2|
(O為原點),則雙曲線F的離心率為( 。
A、
3
B、
5
C、
6
D、
5
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
7
5
<1+
1
22
+
1
32
+
1
42
+
1
52
+
1
62
+
1
72
+
1
82
+
1
92
17
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合P={x|x2-x-6<0},Q={x|x-a≥0}
(1)若P⊆Q,求實數(shù)a的取值范圍;
(2)若P∩Q=∅,求實數(shù)a的取值范圍;
(3)若P∩Q={x|0≤x<3},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2013年6月“神舟”發(fā)射成功.這次發(fā)射過程共有四個值得關注的環(huán)節(jié),即發(fā)射、實驗、授課、返回.據(jù)統(tǒng)計,由于時間關系,某班每位同學收看這四個環(huán)節(jié)的直播的概率分別為
3
4
、
1
3
1
2
2
3
,并且各個環(huán)節(jié)的直播收看互不影響.
(Ⅰ)現(xiàn)有該班甲、乙、丙三名同學,求這3名同學至少有2名同學收看發(fā)射直播的概率;
(Ⅱ)若用X表示該班某一位同學收看的環(huán)節(jié)數(shù),求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:log4(3x+2)+log0.25(2x-2)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意正整數(shù)k,證明:2(
k+1
-
k
1
k
<2(
k
-
k-1
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0.9<a<1,試比較a,aa,aaa的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,現(xiàn)要在邊長為100m的正方形ABCD內建一個交通“環(huán)島”.以正方形的四個頂點為圓心在四個角分別建半徑為xm(x不小于9)的扇形花壇,以正方形的中心為圓心建一個半徑為
1
5
x2
m的圓形草地.為了保證道路暢通,島口寬不小于60m,繞島行駛的路寬均小于10m.
(1)求x的取值范圍;(運算中
2
取1.4)
(2)若中間草地的造價為a元/m2,四個花壇的造價為
4
33
ax
元/m2,其余區(qū)域的造價為
12a
11
元/m2,當x取何值時,可使“環(huán)島”的整體造價最低?

查看答案和解析>>

同步練習冊答案