(2011•濟南二模)過點(0,1)且與曲線y=
x+1
x-1
在點(3,2)處的切線垂直的直線的方程為( 。
分析:根據求導法則求出函數(shù)的導函數(shù),然后把x=3代入導函數(shù)求出切線方程的斜率,然后根據兩直線垂直時斜率的關系求出所求直線的斜率,由已知點的坐標和求出的斜率寫出所求直線的方程即可.
解答:解:由y=
x+1
x-1
,得到y(tǒng)′=
(x-1)-(x+1)
(x-1)2
=-
2
(x-1)2

把x=3代入y′得:y′x=3=-
1
2
,
則所求直線方程的斜率為2,又所求直線過(0,1),
所求直線額方程為:y-1=2x,即2x-y+1=0.
故選A
點評:此題考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,掌握兩直線垂直時斜率滿足的關系,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•濟南二模)i為虛數(shù)單位,復平面內表示復數(shù)z=
-i
2+i
的點在( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•濟南二模)在數(shù)列{an}中,a1=1,并且對于任意n∈N*,都有an+1=
an
2an+1

(1)證明數(shù)列{
1
an
}為等差數(shù)列,并求{an}的通項公式;
(2)設數(shù)列{anan+1}的前n項和為Tn,求使得Tn
1000
2011
的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•濟南二模)二項式(
x
-
2
x
6
的展開式中的常數(shù)項為
-160
-160

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•濟南二模)如圖,矩形OABC內的陰影部分是由曲線f(x)=sinx(x∈(0,π))及直線x=a(a∈(0,π))與x軸圍成,向矩形OABC內隨機投擲一點,若落在陰影部分的概率為
3
16
,則a的值是
3
3

查看答案和解析>>

同步練習冊答案