點P在以F1、F2為焦點的雙曲線數(shù)學(xué)公式上運動,則△PF1F2的重心G的軌跡方程是________.

3x2-y2=1
分析:設(shè)點P(m,n ),則 ①.設(shè)△PF1F2的重心G(x,y),則由三角形的重心坐標(biāo)公式可得x=,y=,解出m、n的解析式代入①化簡可得所求.
解答:由雙曲線的方程可得 a=,b=3,c=2,∴F1(-2,0),F(xiàn)2(-2,0).
設(shè)點P(m,n ),則 ①.設(shè)△PF1F2的重心G(x,y),則由三角形的重心坐標(biāo)公式可得
x=,y=,即 m=3x,n=3y,代入①化簡可得
3x2-y2=1,故△PF1F2的重心G的軌跡方程是 3x2-y2=1,
故答案為3x2-y2=1.
點評:本題考查用代入法求點的軌跡方程的方法,三角形的重心坐標(biāo)公式,找出點P(m,n ) 與重心G(x,y) 的坐標(biāo)間的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P在以F1、F2為焦點的雙曲線
x2
3
-
y2
9
=1
上運動,則△PF1F2的重心G的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P在以F1、F2為焦點的橢圓
x2
16
+
y2
9
=1
上運動,則△F1F2P的重心G的軌跡方程是
9x2
16
+y2=1
(x≠0)
9x2
16
+y2=1
(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P在以F1,F(xiàn)2為焦點的橢圓上,PF2⊥F1F2tan∠PF1F2=
3
4
,則橢圓的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P在以F1、F2為焦點的橢圓
x2
3
+
y2
4
=1
上運動,則△PF1F2的重心G的軌跡方程是
3x2+
9y2
4
=1
(x≠0)
3x2+
9y2
4
=1
(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案