分析 (1)設(shè)圓心坐標(biāo)為C(a,a+1),根據(jù)A、B兩點(diǎn)在圓上利用兩點(diǎn)的距離公式建立關(guān)于a的方程,解出a值.從而算出圓C的圓心和半徑,可得圓C的方程.
(2)設(shè)出點(diǎn)G、N的坐標(biāo),再由中點(diǎn)坐標(biāo)公式用G點(diǎn)的坐標(biāo)表示N點(diǎn)的坐標(biāo),再代入圓的方程,整理后得到點(diǎn)G軌跡方程.
解答 解:(1)由圓心C在直線y=x+1上,可設(shè)圓心的坐標(biāo)為C(a,a+1),
再根據(jù)圓C經(jīng)過點(diǎn)A(-3,2)和點(diǎn)B(1,0),可得|CA|=|CB|,
即(a+3)2+(a-1)2=(a-1)2+(a+1)2,求得a=-2,
可得圓心C的坐標(biāo)是(-2,-1),r=$\sqrt{10}$,
∴圓C的標(biāo)準(zhǔn)方程為(x+2)2+(y+1)2=10
(2)設(shè)N(x1,y1),G(x,y),
∵線段MN的中點(diǎn)是G,
∴由中點(diǎn)公式得x1=2x-3,y1=2y-4,
∵N在圓C上,∴(2x-1)2+(2y-3)2=10,
∴點(diǎn)G的軌跡方程是${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{5}{2}$.
點(diǎn)評(píng) 本題是直線與圓的方程綜合性題,考查了用待定系數(shù)法求圓的方程,用代入法求動(dòng)點(diǎn)的軌跡方程,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{7}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-5y-11=0 | B. | 5x-3y-13=0 | C. | 5x+3y-7=0 | D. | 3x+5y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | $-\frac{π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com