【題目】已知函數(shù)g(x)=1+ .
(1)判斷函數(shù)g(x)的奇偶性
(2)用定義證明函數(shù)g(x)在(﹣∞,0)上為減函數(shù).
【答案】
(1)解:由2x﹣1≠0得x≠0,即函數(shù)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),
則g(x)= ,
g(﹣x)= = =﹣ =﹣g(x),
則g(x)為奇函數(shù)
(2)證明:設(shè)x1<x2<0,
則g(x1)﹣g(x2)= ﹣ = >0,
∴g(x1)>g(x2),
∴g(x)在(﹣∞,0)上為減函數(shù)
【解析】(1)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.(2)利用函數(shù)單調(diào)性的定義進(jìn)行證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較,以及對函數(shù)的奇偶性的理解,了解偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某扇形的面積為4cm2 , 周長為8cm,則此扇形圓心角的弧度數(shù)是;若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則不等式 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是( )
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣ )
D.f(2)<f(﹣ )<f(﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知橢圓C: 的離心率為, 是橢圓的兩個(gè)焦點(diǎn), 是橢圓上任意一點(diǎn),且的周長是.
(1)求橢圓C的方程;
(2)設(shè)圓T: ,過橢圓的上頂點(diǎn)作圓T的兩條切線交橢圓于E、F兩點(diǎn),當(dāng)圓心在軸上移動(dòng)且時(shí),求EF的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,點(diǎn)M,N分別在PB,PC上,且MN∥BC.
(1)證明:平面AMN⊥平面PBA;
(2)若M為PB的中點(diǎn),求二面角M﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com