如圖所示,在正三棱柱(底面是正三角形的直棱柱)A1B1C1-ABC中,M為A1B1的中點(diǎn),P∈平面ABC,PA⊥平面ACC1A1,且AB=AA1=4,PA=4
3

(1)求證:C1M⊥平面PCC1;
(2)求二面角A1-PC1-C的余弦值.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面垂直的判定
專題:空間角
分析:(1)以A為原點(diǎn),建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能證明C1M⊥平面PCC1
(2)分別求出平面A1PC1的法向量和平面PC1C的法向量,利用向量法能求出二面角A1-PC1-C的余弦值.
解答: (1)證明:以A為原點(diǎn),建立空間直角坐標(biāo)系A(chǔ)-xyz,如圖所示,
則P(4
3
,0,0),M(-
3
,1,4),A1(0,0,4),C1(0,4,4),
C1M
=(-
3
,-3,0),
CC1
=(0,0,4),
PC
(-4
3
,4,0),
C1M
CC1
=0,
C1M
PC
=0,
∴C1M⊥CC1,C1M⊥PC,
∵CC1∩PC=C,CC1?平面PCC1,PC?平面PCC1
∴C1M⊥平面PCC1
(2)
A1C1 
=(0,4,0),
A1P
=(4
3
,0,-4),
設(shè)平面A1PC1的法向量
n
=(x,y,z),
n
A1C1
=4y=0
n
A1P
=4
3
x-4z=0
,取x=1,得
n
=(1,0,
3
),
由(1)知平面PC1C的一個(gè)法向量為
C1M
=(-
3
,-3,0),
∴cos<
C1M
,
n
>=
-
3
2×2
3
=-
1
4
,
∴二面角A1-PC1-C的余弦值為-
1
4
點(diǎn)評(píng):本題考查空間點(diǎn)、線、面位置關(guān)系,考查二面角、空間向量及坐標(biāo)運(yùn)算等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力,考查用向量方法解決問(wèn)題能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合M={x|x2+x-2xλ≥0,x∈N*},若集合M中的元素個(gè)數(shù)為4,則實(shí)數(shù)λ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若“x2-x-6>0”是“x<m”的必要不充分條件,則m的最大值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x-3)2+y2=6,求
y
x
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求:DE與面A1D1B成角余弦值;
(3)在線段AB上是否存在點(diǎn)M,使二面角D1-MC-D的大小為
π
4
?若存在,求出AM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax2(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=4內(nèi)一定點(diǎn)Q(1,0),過(guò)點(diǎn)Q作傾斜角不為0°的直線L交圓O于A、B兩點(diǎn).
(1)若
AQ
=2
QB
,求直線L的方程;
(2)試證在x軸上存在一定點(diǎn)M,使得MQ平分∠AMB,并求出定點(diǎn)M的坐標(biāo);
(3)對(duì)于(2)中的點(diǎn)M,若∠AMB=60°,求△AMB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一圓過(guò)P(4,-2)、Q(-1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)為4
3
,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,它的一個(gè)焦點(diǎn)恰好與拋物線y2=4x的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)設(shè)橢圓的上頂點(diǎn)為A,過(guò)點(diǎn)A作橢圓C的兩條動(dòng)弦AB,AC,若直線AB,AC斜率之積為
1
4
,直線BC是否一定經(jīng)過(guò)一定點(diǎn)?若經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案