【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為

【答案】16
【解析】解:根據(jù)題意,設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的平均數(shù)為 , 又由其方差為4,則有 = [(x1 2+(x2 2+(x3 2+…+(x2017 2]=4,
對(duì)于數(shù)據(jù)yi=2xi﹣1(i=1,2,…,2017),
其平均數(shù) =(y1+y2+…+y2017)=[(2x1﹣1)+(2x2﹣1)+…+(2x2017﹣1)]=2 ﹣1,
其方差 = [(y1 2+(y2 2+(y3 2+…+(y2017 2]
= [(x1 2+(x2 2+(x3 2+…+(x2017 2]=16,
故答案為:16.
根據(jù)題意,設(shè)數(shù)據(jù)x1 , x2 , …,x2017的平均數(shù)為 ,由方差公式可得 = [(x1 2+(x2 2+(x3 2+…+(x2017 2]=4,進(jìn)而對(duì)于數(shù)據(jù)yi=2xi﹣1,可以求出其平均數(shù),進(jìn)而由方差公式計(jì)算可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,分別為棱的中點(diǎn),是線段的中點(diǎn),若點(diǎn)分別為線段上的動(dòng)點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個(gè)關(guān)于圓錐曲線的命題中:

①設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點(diǎn);

④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若動(dòng)點(diǎn)在直線上,動(dòng)點(diǎn)Q在直線上,記線段的中點(diǎn)為

,且,則的取值范圍為 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐,平面,,.

(1)求證:

(2)當(dāng)幾何體的體積等于時(shí),求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心在軸上,并且過兩點(diǎn).

(1)求圓的方程;

(2)設(shè)直線與圓交于兩點(diǎn),那么以為直徑的圓能否經(jīng)過原點(diǎn),若能,請(qǐng)求出直線的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種.若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若x1、x2∈R+ , 且x1≤x2 , 求證:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為、,上頂點(diǎn)為BO為坐標(biāo)原點(diǎn),且向量的夾角為

求橢圓的方程;

設(shè),點(diǎn)P是橢圓上的動(dòng)點(diǎn),求的最大值和最小值;

設(shè)不經(jīng)過點(diǎn)B的直線l與橢圓相交于M、N兩點(diǎn),且直線BM、BN的斜率之和為1,證明:直線l過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案