在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與曲線交于,兩點(diǎn).
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說明理由.
(1);(2)存在面積的最大值為.
【解析】
試題分析:(1)根據(jù)橢圓的性質(zhì)易得橢圓方程;(2)先設(shè)過點(diǎn)E的直線方程,然后把直線方程和橢圓方程聯(lián)立得關(guān)于y的一元二次方程,解出,,則 ,從而得△面積的表達(dá)式,再由不等式性質(zhì)求得面積最大值.
試題解析:(1)由橢圓定義可知,點(diǎn)P的軌跡C是以,為焦點(diǎn),
長半軸長為2的橢圓, 3分
故曲線C的方程為. 6分
(2)存在面積的最大值. 7分
因?yàn)橹本過點(diǎn),可設(shè)直線的方程為或(舍),
則整理得 . 8分
由.設(shè).
解得 , .則 .
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121809161287389036/SYS201312180917402332501473_DA.files/image019.png">. 11分
設(shè),,.
則在區(qū)間上為增函數(shù).所以.
所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),即.
所以的最大值為. 14分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程及性質(zhì);2、直線與橢圓相交問題;3、不等式的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com