【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分別是AB、BC的中點,證明A1、C1、F、E四點共面,并求直線CD1與平面A1C1FE所成的角的大。

【答案】

【解析】試題分析:由中位線的性質(zhì)和長方體的性質(zhì)可得,平行的兩直線必定共面,所以可以證明, 四點共面;建立空間直角坐標系,寫出上兩相交向量及的坐標,設(shè)平面的法向量的坐標,根據(jù)法向量與平面內(nèi)任意向量的內(nèi)積為求出法向量,從而可以求出法向量與的余弦值,該余弦值的絕對值即為與平面所成角的正弦值。

解析:連接AC,因為E,F(xiàn)分別是AB,BC的中點,所以EF是ABC的中位線,所以EFAC.由長方體的性質(zhì)知AC∥A1C1,

所以EF∥A1C1,

所以A1、C1、F、E四點共面.

以D為坐標原點,DA、DC、DD1分別為x、y、z軸,建立空間直角坐標系,易求得

設(shè)平面A1C1EF的法向量為

,所以,即,

z=1,得x=1,y=1,所以,

所以=,

所以直線CD1與平面A1C1FE所成的角的大小arcsin

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四棱錐 中,

.

(1)證明:頂點在底面的射影為邊的中點;

(2)點上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南安陽市高三一模如下圖,在平面直角坐標系直線與直線之間的陰影部分即為,區(qū)域中動點的距離之積為1

)求點的軌跡的方程;

)動直線穿過區(qū)域,分別交直線兩點,若直線與軌跡有且只有一個公共點,求證 的面積恒為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列{an}(nN*),首項a13,前n項和為Sn,且S3a3S5a5,S4a4成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn[a,b],求ba的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,直線lyt(t≠0)交y軸于點M,交拋物線Cy2=2px(p>0)于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.

(1)求;

(2)除H以外,直線MHC是否有其它公共點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)

頻數(shù)

頻率

合計

Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出, 的值.

Ⅱ)某人從燈泡樣品中隨機地購買了個,求個燈泡中恰有一個是優(yōu)等品的概率.

Ⅲ)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·成都一診)已知橢圓的右焦點為F,設(shè)直線lx=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.

(1)若直線l1的傾斜角為,求△ABM的面積S的值;

(2)過點B作直線BNl于點N,證明:AM,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

,,的單調(diào)遞減區(qū)間;

若函數(shù)有唯一的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

求函數(shù)圖象恒過的定點坐標;

恒成立的值;

(Ⅲ)在(Ⅱ)成立的條件下,證明: 存在唯一的極小值點.

查看答案和解析>>

同步練習(xí)冊答案