【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線為參數(shù)),將上的所有點的橫坐標、縱坐標分別伸長為原來的倍后得到曲線.以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.

(1)試寫出曲線的極坐標方程與曲線的參數(shù)方程;

(2)在曲線上求一點,使點到直線的距離最小,并求此最小值.

【答案】(1),為參數(shù));(2).

【解析】試題分析:(1)根據(jù) 將曲線的參數(shù)方程化為普通方程: ,再根據(jù) 將直角坐標方程化為極坐標方程;由圖像變換可得曲線的參數(shù)方程是(2)先根據(jù) 將直線化為直角坐標方程,再根據(jù)點到直線距離公式得,利用三角函數(shù)有界性確定函數(shù)最小值,并確定取最小值時的值,進而確定點坐標.

試題解析:(1)由已知得曲線的直角坐標方程是,

所以曲線的極坐標方程是.

根據(jù)已知曲線的參數(shù)方程伸縮變換得到曲線的參數(shù)方程是為參數(shù)).

(2)設(shè),由已知得直線的直角坐標方程是

,所以點到直線的距離

時, ,此時點的坐標是,

所以曲線上的一點 到直線的距離最小,最小值是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知.

(Ⅰ)解不等式;

(Ⅱ)若關(guān)于的不等式對任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) fx=axlnx,其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).

1)當a=1時,求的最大值;

2)若fx)在區(qū)間(0,e]上的最大值為-3,求a的值;

3)當a=1時,試推斷方程是否有實數(shù)解 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓過點, .

求:(1)周長最小的圓的方程;

2)圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中, 分別是的中點.

1)證明:平面平面;

2上是否存在點,使平面?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)+f(2﹣x)=2,當x∈(0,1]時,f(x)=x2 , 當x∈(﹣1,0]時, ,若定義在(﹣1,3)上的函數(shù)g(x)=f(x)﹣t(x+1)有三個不同的零點,則實數(shù)t的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為評選“全國衛(wèi)生城市”,從200名志愿者中隨機抽取40名志愿者參加街道衛(wèi)生監(jiān)督活動,經(jīng)過統(tǒng)計這些志愿者的年齡介于25歲和55歲之間,為方便安排任務(wù),將所有志愿者按年齡從小到大分成六組,依次為,如圖是按照上述分組方法得到的頻率分布直方圖的一部分,已知第四組的人數(shù)為4人.

(1)求第五組的頻率并估計200名志愿者中年齡在40歲以上(含40歲)的人數(shù);

(2)若從年齡位于第四組和第六組的志愿者中隨機抽取兩名,記他們的年齡分別為,事件,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人玩數(shù)字游戲,先由甲任想一個數(shù)字記為a,再由乙猜甲剛才想的數(shù)字,把乙想的數(shù)字記為b,且a,b∈{1,2,3,4,5,6},記ξ=|a﹣b|.
(1)求ξ=1的概率;
(2)若ξ≤1,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,由三棱柱和四棱錐構(gòu)成的幾何體中, 平面, , ,平面平面

(Ⅰ)求證: ;

(Ⅱ)若為棱的中點,求證: 平面;

(Ⅲ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案