已知橢圓的方程為
,點(diǎn)
的坐標(biāo)滿足
過(guò)點(diǎn)
的直線
與橢圓交于
、
兩點(diǎn),點(diǎn)
為線段
的中點(diǎn),求:
(1)點(diǎn)的軌跡方程;
(2)點(diǎn)的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).
(Ⅰ)(Ⅱ)當(dāng)a=0,b=0,即點(diǎn)P(a,b)為原點(diǎn)時(shí),(a,0)、(0,b)與(0,0)重點(diǎn),曲線L與坐標(biāo)軸只有一個(gè)交點(diǎn)(0,0)
當(dāng)a=0且,即點(diǎn)P(a,b)不在橢圓C外且在除去原點(diǎn)的y軸上時(shí),點(diǎn)(a,0)與(0,0)重合,曲線L與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,b)與(0,0)
同理,當(dāng)b=0且,即點(diǎn)P(a,b)不在橢圓C外且在除去原點(diǎn)的x軸上時(shí),曲線L與坐標(biāo)軸有兩個(gè)交點(diǎn)(a,0)與(0,0)
當(dāng)且
,即點(diǎn)P(a,b)在橢圓C內(nèi)且不在坐標(biāo)軸上時(shí),曲線L與坐標(biāo)軸有三個(gè)交點(diǎn)(a,0)、(0,b)與(0,0)
(1)設(shè)點(diǎn)、
的坐標(biāo)分別為
、
,點(diǎn)
的坐標(biāo)為
.當(dāng)
時(shí),設(shè)直線
的斜率為
,則
的方程為
由已知 (1)
(2)
由(1)得
, (3)
由(2)得
, (4)
由(3)、(4)及,
,
,
得點(diǎn)Q的坐標(biāo)滿足方程
(5)
當(dāng)時(shí),k不存在,此時(shí)l平行于y軸,因此AB的中點(diǎn)Q一定落在x軸上,即Q的坐標(biāo)為(a,0)
顯然點(diǎn)Q的坐標(biāo)滿足方程(5)
綜上所述,點(diǎn)Q的坐標(biāo)滿足方程
設(shè)方程(5)所表示的曲線為L,
則由
得
因?yàn)?img width=142 height=50 src="http://thumb.zyjl.cn/pic1/1899/sx/186/119186.gif">,由已知,
所以當(dāng)時(shí),△=0,曲線L與橢圓C有且只有一個(gè)交點(diǎn)P(a,b)
當(dāng)時(shí),△<0,曲線L與橢圓C沒(méi)有交點(diǎn)
因?yàn)椋?,0)在橢圓C內(nèi),又在曲線L上,所以曲線L在橢圓C內(nèi)
故點(diǎn)Q的軌跡方程為
(2)由 解得曲線L與y軸交于點(diǎn)(0,0),(0,b)
由 解得曲線L與x軸交于點(diǎn)(0,0),(a,0)
當(dāng)a=0,b=0,即點(diǎn)P(a,b)為原點(diǎn)時(shí),(a,0)、(0,b)與(0,0)重點(diǎn),曲線L與坐標(biāo)軸只有一個(gè)交點(diǎn)(0,0)
當(dāng)a=0且,即點(diǎn)P(a,b)不在橢圓C外且在除去原點(diǎn)的y軸上時(shí),點(diǎn)(a,0)與(0,0)重合,曲線L與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,b)與(0,0)
同理,當(dāng)b=0且,即點(diǎn)P(a,b)不在橢圓C外且在除去原點(diǎn)的x軸上時(shí),曲線L與坐標(biāo)軸有兩個(gè)交點(diǎn)(a,0)與(0,0)
當(dāng)且
,即點(diǎn)P(a,b)在橢圓C內(nèi)且不在坐標(biāo)軸上時(shí),曲線L與坐標(biāo)軸有三個(gè)交點(diǎn)(a,0)、(0,b)與(0,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的方程為
,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)
的坐標(biāo);
(2)設(shè)直線交橢圓
于
、
兩點(diǎn),交直線
于點(diǎn)
.若
,證明:
為
的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個(gè)交點(diǎn)
、
滿足
,寫(xiě)出求作點(diǎn)
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為
,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)
的坐標(biāo);
(2)設(shè)直線交橢圓
于
、
兩點(diǎn),交直線
于點(diǎn)
.若
,證明:
為
的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個(gè)交點(diǎn)
、
滿足
,寫(xiě)出求作點(diǎn)
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為
,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)
的坐標(biāo);
(2)設(shè)直線交橢圓
于
、
兩點(diǎn),交直線
于點(diǎn)
.若
,證明:
為
的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個(gè)交點(diǎn)
、
滿足
,寫(xiě)出求作點(diǎn)
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省聊城市高二第四次模塊檢測(cè)理科數(shù)學(xué)卷(解析版) 題型:解答題
已知橢圓的方程為
,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)
的坐標(biāo);
(2)設(shè)直線交橢圓
于
、
兩點(diǎn),交直線
于點(diǎn)
.若
,證明:
為
的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個(gè)交點(diǎn)
、
滿足
,寫(xiě)出求作點(diǎn)
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com