精英家教網 > 高中數學 > 題目詳情
在△ABC中,cosA=
11
14
,cosB=
13
14

(Ⅰ)求cosC的值;
(Ⅱ)若|
CA
+
CB
|=
19
,求|
AB
|
分析:(1)先根據三角形中角的范圍求出sinA=
5
3
14
,sinB=
3
3
14
,再由兩角和的余弦定理可得答案.
(2)先根據正弦定理確定三角形三邊的比值關系,再根據向量中模的運算可得答案.
解答:解:(Ⅰ)由cosA=
11
14
,cosB=
13
14
,且0<A,B<π,
所以sinA=
5
3
14
,sinB=
3
3
14

于是cosC=-cos(A+B)=sinAsinB-cosAcosB=-
1
2

(Ⅱ)由正弦定理可得
BC
5
3
14
=
AC
3
3
14
=
AB
3
2

所以BC=
5
7
AB,AC=
3
7
AB

|
CA
+
CB
|=
19
CA
2
+
CB
2
+2
CA
CB
=19

(
5
7
AB)2+(
3
7
AB)2+2•(
3
7
AB)•(
5
7
AB)•(-
1
2
)=19

解得AB=7.即|
AB
|
=7.
點評:本題主要考查三角函數的兩角和與差的余弦公式和平面向量的數量積運算.三角和向量的綜合題詩高考的熱點每年必考,要給予重視.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

6、在△ABC中,cos(A-B)+sin(A+B)=2,則△ABC的形狀為
等腰直角
三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

3、在△ABC中,cos 2B>cos 2A是A>B的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,cos(A+C)=-
3
5
,且a,c的等比中項為
35

(1)求△ABC的面積;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,cos(A-C)+2cos2
B
2
=
5
2
,三邊a,b,c成等比數列,求B.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在△ABC中,cos∠ABC=
1
3
,AB=6,AD=2DC,點D在AC邊上.
(Ⅰ)若BC=AC,求sin∠ADB;
(Ⅱ)若BD=4
3
,求BC的長.

查看答案和解析>>

同步練習冊答案