精英家教網 > 高中數學 > 題目詳情
若函數f(x)=ax(a>0,a≠1﹚在區(qū)間[-1,2]上的最大值為4,最小值為m,且函數g(x)=(1-4m)x在R內是單調增函數,則a=
 
考點:指數函數的單調性與特殊點
專題:函數的性質及應用
分析:根據指數函數的單調性,進行討論解方程即可得到結論.
解答: 解:若函數g(x)=(1-4m)x在R內是單調增函數,
則1-4m>0,則m
1
4

若a>1,∵函數f(x)=ax(a>0,a≠1﹚在區(qū)間[-1,2]上的最大值為4,最小值為m,
∴a2=4,m=a-1=
1
a
解得a=2,m=
1
2
不滿足m
1
4

若0<a<1,∵函數f(x)=ax(a>0,a≠1﹚在區(qū)間[-1,2]上的最大值為4,最小值為m,
a-1=
1
a
=4
,m=a2,解得a=
1
4
,m=
1
16
滿足m
1
4

∴a=
1
4
,
故答案為:
1
4
點評:本題主要考查指數函數的單調性和a的關系,注意要對a進行分類討論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求函數y=sin(x-
π
6
),x∈(-
π
2
π
2
)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)滿足:集合A={f(n)|n∈N*}中至少存在三個不同的數構成等比數列,則稱函數f(x)是等比源函數.
(1)判斷下列函數:①y=log2x;②y=sin
π
2
x中,哪些是等比源函數?(不需證明)
(2)證明:對任意的正奇數b,函數f(x)=2x+b不是等比源函數;
(3)證明:任意的d,b∈N*,函數g(x)=dx+b都是等比源函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a3=4,a5+a7=14,{an}的前n項和為Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=
1
an2-1
(n∈N*),求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知冪函數f(x)=xa的圖象過點(
1
2
,
2
2
),則不等式f(|x|)≤2的解集是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于集合A={a1,a2,…,an}(n∈N*,n≥3),定義集合S={x|x=ai+aj,1≤i<j≤n},記集合S中的元素個數為S(A).若a1,a2,…,an是公差大于零的等差數列,則S(A)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

等比數列{an}中,a3=4,a7=16,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二面角α-l-β大小為60°,點M、N分別在α、β面內,點P到α、β的距離分別為2和3,則△PMN周長的最小值等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出如下四個判斷:
①?x0∈R,ex0≤0;
②?x∈R+,2x>x2
③設集合A={x|
x-1
x+1
<0},B={x|x-1|<a},則“a=1”是“A∩B≠∅”的必要不充分條件;  
a
b
為單位向量,其夾角為θ,若|
a
-
b
|>1,則
π
3
<θ≤π.
其中正確的判斷個數是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案