(09年濱州一模理)(12分)
如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,平面PBC⊥底面ABCD,且PB=PC=.
(Ⅰ)求證:AB⊥CP;
(Ⅱ)求點(diǎn)到平面的距離;
(Ⅲ)設(shè)面與面的交線為,求二面角的大。
解析:(Ⅰ)∵ 底面ABCD是正方形,
∴AB⊥BC,
又平面PBC⊥底面ABCD
平面PBC ∩ 平面ABCD=BC
∴AB ⊥平面PBC
又PC平面PBC
∴AB ⊥CP ………………3分
(Ⅱ)解法一:體積法.由題意,面面,
取中點(diǎn),則
面.
再取中點(diǎn),則 ………………5分
設(shè)點(diǎn)到平面的距離為,則由
. ………………7分
解法二:面
取中點(diǎn),再取中點(diǎn)
,
過點(diǎn)作,則
在中,
由
∴點(diǎn)到平面的距離為。 ………………7分
解法三:向量法(略)
(Ⅲ)
面
就是二面角的平面角.
∴二面角的大小為45°. ………………12分
方法二:向量法(略).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年濱州一模理)(14分)
已知曲線過上一點(diǎn)作一斜率為的直線交曲線于另一點(diǎn),點(diǎn)列的橫坐標(biāo)構(gòu)成數(shù)列,其中.
(I)求與的關(guān)系式;
(II)令,求證:數(shù)列是等比數(shù)列;
(III)若(λ為非零整數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,都有cn+1>cn成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濱州一模理)(12分)
已知方向向量為的直線過點(diǎn)和橢圓的右焦點(diǎn),且橢圓的離心率為.
(I)求橢圓的方程;
(II)若已知點(diǎn),點(diǎn)是橢圓上不重合的兩點(diǎn),且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濱州一模理)(12分)
設(shè)函數(shù)
(I)若直線l與函數(shù)的圖象都相切,且與函數(shù)的圖象相切于點(diǎn)
(1,0),求實數(shù)p的值;
(II)若在其定義域內(nèi)為單調(diào)函數(shù),求實數(shù)p的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濱州一模理)(12分)
已知向量,其中>0,且,又的圖像兩相鄰對稱軸間距為.
(Ⅰ)求的值;
(Ⅱ) 求函數(shù)在[-]上的單調(diào)減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com