【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點是橢圓上的點

(1)若過點的直線與橢圓有且只有一個公共點,求被橢圓的伴隨圓所截得的弦長:

(2)是橢圓上的兩點,設是直線的斜率,且滿足,試問:直線是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。

【答案】(1) (2)過原點

【解析】試題分析:(1)分析直線的斜率是否存在,若不存在不符合題意,當存在時設直線,根據(jù)直線與圓的關系中弦心距,半徑,半弦長構成的直角三角形求解即可;(2)設直線的方程分別為,設點,聯(lián)立得得同理,計算,同理因為,可得,從而可證.

試題解析:

(1)因為點是橢圓上的點.

即橢圓

伴隨圓同理,計算

當直線的斜率不存在時:顯然不滿足與橢圓有且只有一個公共點

當直接的斜率存在時:設直線與橢圓聯(lián)立得

由直線與橢圓有且只有一個公共點得

解得,由對稱性取直線

圓心到直線的距離為

直線被橢圓的伴隨圓所截得的弦長

(2)設直線的方程分別為

設點

聯(lián)立

同理

斜率

同理因為

所以 三點共線

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在上的函數(shù), ,

其中,設兩曲線有公共點,且在公共點處的切線相同

(Ⅰ)若,求的值;

表示,并求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面 ,

(1)求證: 平面

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

已知極坐標系的極點在直角坐標系的原點處,極軸與軸的非負半軸重合,直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)設 分別是直線與曲線上的點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,點在橢圓上,且離心率為

(1)求橢圓的方程;

(2)若的角平分線所在的直線與橢圓的另一個交點為為橢圓上的一點,當面積最大時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點,為頂點的三角形的周長為.

(1)求橢圓的標準方程;

(2)設該橢圓軸的交點為, (點位于點的上方),直線與橢圓相交于不同的兩點 ,求證:直線與直線的交點在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, , ,平面 平面 .

(1)求證: ;

(2)是否存在點,到四棱錐各頂點的距離都相等?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全省名男生的身高服從正態(tài)分布,現(xiàn)從該生某校高三年級男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結果按如下方式分成組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.

(1)求該學校高三年級男生的平均身高;

(2)求這名男生中身高在以上(含)的人數(shù);

(3)從這名男生中身高在以上(含)的人中任意抽取人,該中身高排名(從高到低)在全省前名的人數(shù)記為,求的數(shù)學期望.

(附:參考數(shù)據(jù):若服從正態(tài)分布,則 , .)

查看答案和解析>>

同步練習冊答案