【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在全國蔓延.疫情就是命令,防控就是責任.在黨中央的堅強領導和統(tǒng)一指揮下,全國人民眾志成城、團結(jié)一心,掀起了一場堅決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭.下側(cè)的圖表展示了2月14日至29日全國新冠肺炎疫情變化情況,根據(jù)該折線圖,下列結(jié)論正確的是( )
A.16天中每日新增確診病例數(shù)量呈下降趨勢且19日的降幅最大
B.16天中每日新增確診病例的中位數(shù)大于新增疑似病例的中位數(shù)
C.16天中新增確診、新增疑似、新增治愈病例的極差均大于
D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象在點處的切線斜率為,其中為自然對數(shù)的底數(shù).
(1)求實數(shù)的值,并求的單調(diào)區(qū)間;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、、三種樣式玩偶的概率相同.某同學已經(jīng)有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點為調(diào)查該款盲盒的受歡迎程度,隨機發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有的人購買了該款盲盒,在這些購買者當中,女生占;而在未購買者當中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認為購買該款盲盒與性別有關(guān)?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負責人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進行檢驗.
①請用4、5、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
③如果通過②的檢驗得到的回歸直線方程可靠,我們可以認為第2周賣出的盒數(shù)誤差也不超過2盒,請你求出第2周賣出的盒數(shù)的可能取值;如果不可靠,請你設計一個估計第2周賣出的盒數(shù)的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點為,,離心率為,過點且垂直于軸的直線被橢圓截得的弦長為1.
(1)求橢圓的方程;
(2)若直線交橢圓于點,兩點,與線段和橢圓短軸分別交于兩個不同點,,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓經(jīng)過橢圓的左右焦點,與橢圓在第一象限的交點為,且, , 三點共線.
(1)求橢圓的方程;
(2)設與直線(為原點)平行的直線交橢圓于兩點,當的面積取取最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設點,直線與曲線的交點為、,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com