如果指數(shù)函數(shù)f(x)=(a-1)x是R上的減函數(shù),則函數(shù)g(x)=a|x|的單調(diào)遞增區(qū)間為
 
考點:指數(shù)函數(shù)的圖像變換
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)單調(diào)性的性質(zhì),求出a的取值范圍,利用復(fù)合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:∵指數(shù)函數(shù)f(x)=(a-1)x是R上的減函數(shù),
∴0<a-1<1,解得1<a<2,
設(shè)t=|x|,則根據(jù)復(fù)合函數(shù)單調(diào)性之間的性質(zhì)可得,
當(dāng)x≥0時,函數(shù)g(x)單調(diào)遞增,
當(dāng)x<0時,函數(shù)g(x)單調(diào)遞減.
故函數(shù)的遞增區(qū)間是[0,+∞),
故答案為:[0,+∞)
點評:本題主要考查復(fù)合函數(shù)單調(diào)區(qū)間的求解,根據(jù)復(fù)合函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x,x>0
log2x,x<0
,則f(f(
1
4
))+f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:x2+y2=4,在圓M上隨機取兩點A、B,使|AB|≤2
3
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={b1,b2,b3,b4},集合B={a1,a2},則從集合A到集合B的映射有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表,對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)a,b(a>b)的比值
a
b
,稱這些比值中的最小值為這個數(shù)表的“特征值”,記為f(n).若aij表示某個n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
,則:
(1)f(3)=
 
;
(2)f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2,x,8成等比數(shù)列,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,判斷框內(nèi)為“k≥n?”,n為正整數(shù),若輸出的S=26,則判斷框內(nèi)的n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某小學(xué)隨機抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).由圖中數(shù)據(jù)可知a=
 
.若要從身高在[120,130),[130,140),[140,150),三組內(nèi)的學(xué)生中,用分層抽樣的方法選取12人參加一項活動,則從身高在[140,150)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2,則f′(-1)等于
 

查看答案和解析>>

同步練習(xí)冊答案