如圖,在四棱錐中,底面為矩形,平面,,中點,上一點.
(1)求證:平面;
(2)當(dāng)為何值時,二面角

(1)詳見解析;(2)

解析試題分析:(1)再由等腰三角形中線即為高線可得,由平面可得,由為矩形可得,根據(jù)線面垂直的判定定理可得平面,從而可得。再由等腰三角形中線即為高線可得,由線面垂直的判定定理可證得平面。(2)(空間向量法)以以為坐標(biāo)原點,、、所在直線為,軸建立空間直角坐標(biāo)系。設(shè)?傻酶鼽c的坐標(biāo),從而可得個向量的坐標(biāo),根據(jù)向量垂直數(shù)量積為0先兩個面的法向量.因為兩法向量所成的角與二面角相等或互補,所以兩法向量夾角的余弦值的絕對值等于。從而可得的值。
證明⑴ 因為平面,平面
所以,因為是矩形,所以.因為,所以平面
因為平面,所以,
因為,中點,所以,
因為 所以平面

解:因為平面,
所以以為坐標(biāo)原點,、、所在直線為,軸建立空間直角坐標(biāo)系,設(shè)
,,,
所以,
設(shè)平面的法向量為,則所以
,得,
所以
平面的法向量為
所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°

(Ⅰ)若AD=2,AB=2BC,求四面體ABCD的體積.
(Ⅱ)若二面角C﹣AB﹣D為60°,求異面直線AD與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.

(1)求證:A1B∥平面AEC1.
(2)求證:B1C⊥平面AEC1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面
(Ⅰ)若,分別為,中點,求證:∥平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長方體中,,G是上的動點。

(l)求證:平面ADG;
(2)判斷與平面ADG的位置關(guān)系,并給出證明;
(3)若G是的中點,求二面角G-AD-C的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,O為AC與BD的交點,AB^平面PAD,△PAD是正三角形,  
DC//AB,DA=DC=2AB.
(1)若點E為棱PA上一點,且OE∥平面PBC,求的值;
(2)求證:平面PBC^平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱臺中,底面是平行四邊形,平面,,.

(1)證明:平面;
(2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, 已知四邊形ABCD和BCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求證: ECCD;
(2)求證:AG∥平面BDE
(3)求:幾何體EG-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案