3.△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA=(2c+a)cos(C+A)•
(I)求角B的大;
( II)若b=4,△ABC的面積為$\sqrt{3}$,求a+c的值.

分析 (I)由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式化簡已知可得sinC=-2sinCcosB,結(jié)合sinC>0,可求cosB的值,結(jié)合B的范圍即可得解B的值.
( II)由三角形面積公式可求ac的值,由余弦定理即可得解a+c的值.

解答 (本小題滿分12分)
解:(I)由條件,得bcosA=(2c+a)cos(π-B)=-(2c+a)cosB,…(1分)
由正弦定理,得sinBcosA=-(2sinC+sinA)cosB,…(3分)
即sinAcosB+cosAsinB=-2sinCcosB,
即sin(A+B)=-2sinCcosB.…(4分)
∵sin(A+B)=sin(π-C)=sinC>0,
∴$cosB=-\frac{1}{2}$…(5分)
∵B∈(0,π),
∴$B=\frac{2π}{3}•$…(6分)
( II)由(I)知$B=\frac{2π}{3}$,則${S_{△ABC}}=\frac{1}{2}acsin\frac{2π}{3}=\sqrt{3}$.
得ac=4.…(8分)
由余弦定理,得${b^2}={a^2}+{c^2}-2accos\frac{2π}{3}={a^2}+{c^2}+ac={(a+c)^2}-ac={(a+c)^2}-4$.…(10分)
∵b=4,
∴(a+c)2=20.故$a+c=2\sqrt{5}$.…(12分)

點評 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{ln(1+x)}{1+x}$.
(Ⅰ)  求f(x)的最小值;
(Ⅱ)若f(x)在區(qū)間[m,n](0≤m<n)上的值域為[km,kn],試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)A={x|y=$\sqrt{x-1}$},B={y|y=2$\sqrt{x}$},則A與B的關(guān)系是A?B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知△ABC是銳角三角形,若A=2B,則$\frac{a}$的取值范圍是( 。
A.($\sqrt{2}$,$\sqrt{3}$)B.($\sqrt{2}$,2)C.(1,$\sqrt{3}$)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.曲線f(x)=-x3+3x2在點(1,f(1))處的切線截圓x2+(y+1)2=4所得弦長為( 。
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.《九章算術(shù)》是我國古代內(nèi)容極為豐富的一部數(shù)學專著,書中有如下問題:今有女子善織,日增等尺,七日織28尺,第二日,第五日,第八日所織之和為15尺,則第九日所織尺數(shù)為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,矩形ABCD中,AB=2,BC=4,將△ABD沿對角線BD折起到△A′BD的位置,使點A′在平面BCD內(nèi)的射影點O恰好落在BC邊上,則異面直線A′B與CD所成角的大小為90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=(x+a)ex+2(其中a∈R,e是自然對數(shù)的底數(shù),e=2.71828…).
(Ⅰ) 求a的值;
(Ⅱ) 若x∈[-1,2]時,方程f(x)=m有實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,小方格是邊長為1的正方形,一個幾何體的三視圖如圖,則幾何體的表面積為( 。
A.4$\sqrt{5}π+96$B.(2$\sqrt{5}+6$)π+96C.(4$\sqrt{5}+4$)π+64D.(4$\sqrt{5}$+4)π+96

查看答案和解析>>

同步練習冊答案