【題目】已知橢圓的離心率,左、右焦點分別是、,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)為橢圓上不在軸上的一個動點,過點的平行線交橢圓與、兩個不同的點,記,,令,求的最大值.

【答案】(Ⅰ);(Ⅱ)

【解析】

1)由圓心到切線的距離求出,再由離心率可求得,從而得橢圓方程;

2)設(shè),,,,由平行線的等積轉(zhuǎn)化,得,因此設(shè)直線方程為,代入橢圓方程整理后用韋達定理得,代入后利用基本不等式可得最大值.

解:(1)由題意可知:橢圓焦點在軸上,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,

所以,

又橢圓的離心率,解得:

橢圓的方程為:;

2)由(1)可知:橢圓的右焦點,設(shè),,,

,

,

設(shè)直線

,整理得:

,,

,

,

,

,

當(dāng)且僅當(dāng)時,即時,取等號,

的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定口徑誤差的計算方式為:管件內(nèi)外兩個口徑實際長分別為,標(biāo)準(zhǔn)長分別為口徑誤差只要口徑誤差不超過就認(rèn)為合格,已知這臺車床分晝夜兩個獨立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.

(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;

(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗,則每件產(chǎn)品的檢驗費用為2.5元;若有不合格品進入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為

Ⅰ)求曲線的方程;

Ⅱ)不垂直于軸且不過點的直線與曲線相交于兩點,若直線、的斜率之和為0,則動直線是否一定經(jīng)過一定點?若過一定點,則求出該定點的坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與橢圓相交于點M0,1),N0,-1),且橢圓的離心率為.

1)求的值和橢圓C的方程;

2)過點M的直線交圓O和橢圓C分別于A,B兩點.

①若,求直線的方程;

②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】無線電技術(shù)在航海中有很廣泛的應(yīng)用,無線電波可以作為各種信息的載體.現(xiàn)有一艘航行中的輪船需要與陸地上的基站進行通信,其連續(xù)向基站拍發(fā)若干次呼叫信號,每次呼叫信號被基站收到的概率都是0.2,基站收到呼叫信號后立即向輪船拍發(fā)回答信號,回答信號一定能被輪船收到.

(Ⅰ)若要保證基站收到信號的概率大于0.99,求輪船至少要拍發(fā)多少次呼叫信號.

(Ⅱ)設(shè)(Ⅰ)中求得的結(jié)果為.若輪船第一次拍發(fā)呼叫信號后,每隔5秒鐘拍發(fā)下一次,直到收到回答信號為止,已知該輪船最多拍發(fā)次呼叫信號,且無線電信號在輪船與基站之間一個來回需要16秒,設(shè)輪船停止拍發(fā)時,一共拍發(fā)了次呼叫信號,求的數(shù)學(xué)期望(結(jié)果精確到0.01).

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)若為單調(diào)遞減函數(shù),求的取值范圍;

2)若有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩動圓),把它們的公共點的軌跡記為曲線,若曲線軸的正半軸的交點為,且曲線上的相異兩點滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經(jīng)過一定點,并求此定點的坐標(biāo);

3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線焦點為,直線與拋物線交于兩點.到準(zhǔn)線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點縱坐標(biāo)為,直線分別交準(zhǔn)線于.求證:以為直徑的圓過焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為為參數(shù),),以為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于,兩點,且,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案