已知橢圓的兩個(gè)焦點(diǎn)分別為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)P在橢圓上,設(shè),試用m表示

(Ⅲ)在(Ⅱ)的條件下,求的最大值和最小值.

答案:
解析:

  (Ⅰ)設(shè)橢圓方程為,

  則由

  橢圓方程為.                   3分;

  (Ⅱ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0579/0021/04f8b4312e005a6ea699da9d4b3bf969/C/Image100.gif" width=16 HEIGHT=17>在橢圓上,故

  

  

        7分;

  (Ⅲ),由平面幾何知識(shí),

  即,所以

  記,設(shè),

  則,所以上單調(diào)遞減,

  所以當(dāng)時(shí)原式取最大值,當(dāng)時(shí)原式取最小值.      12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩個(gè)焦點(diǎn)分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點(diǎn)M,N,且線段MN中點(diǎn)的橫坐標(biāo)為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列各曲線的標(biāo)準(zhǔn)方程.
(1)已知橢圓的兩個(gè)焦點(diǎn)分別是(-2,0),(2,0),并且經(jīng)過(guò)點(diǎn)(
5
2
,-
3
2
).
(2)已知拋物線焦點(diǎn)在x軸上,焦點(diǎn)到準(zhǔn)線的距離為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省高考模擬預(yù)測(cè)卷(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題

給定橢圓  ,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程;

(Ⅱ)過(guò)點(diǎn)P作直線,使得直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.求出的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

((本小題滿分14分)

給定橢圓  ,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程

(Ⅱ)試探究y軸上是否存在點(diǎn)(0, ),使得過(guò)點(diǎn)作直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)

給定橢圓  ,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿足

(Ⅰ) 求橢圓及其“伴隨圓”的方程;

(Ⅱ) 過(guò)點(diǎn)P作直線,使得直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.求出的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案