已知函數(shù),則       
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)某電信部門執(zhí)行的新的電話收費標(biāo)準(zhǔn)中,其中本地網(wǎng)營業(yè)區(qū)內(nèi)的通話費標(biāo)準(zhǔn):前3分鐘為0.20元(不足3分鐘按3分鐘計算),以后的每分鐘收0.10元(不足1分鐘按1分鐘計算。)在一次實習(xí)作業(yè)中,某同學(xué)調(diào)查了A、BC、D、E五人某天撥打的本地網(wǎng)營業(yè)區(qū)內(nèi)的電話通話時間情況,其原始數(shù)據(jù)如下表所示:
 
A
B
C
D
E
第一次通話時間
3分
3分45秒
3分55秒
3分20秒
6分
第二次通話時間
0分
4分
3分40秒
4分50秒
0分
第三次通話時間
0分
0分
5分
2分
0分
應(yīng)繳話費(元)
 
 
 
 
 
⑴在上表中填寫出各人應(yīng)繳的話費;
⑵設(shè)通話時間為t分鐘,試根據(jù)上表完成下表的填寫(即這五人在這一天內(nèi)的通話情況統(tǒng)計表):
時間段
頻數(shù)累計
頻數(shù)
頻率
累計頻率
0<t≤3

2
0.2
0.2
3<t≤4
 
 
 
 
4<t≤5
 
 
 
 
5<t≤6
 
 
 
 
合計
正正
 
 
 
⑶若該本地網(wǎng)營業(yè)區(qū)原來執(zhí)行的電話收費標(biāo)準(zhǔn)是:每3分鐘為0.20元(不足3分鐘按3分鐘計算)。問這五人這天的實際平均通話費與原通話標(biāo)準(zhǔn)下算出的平均通話費相比,是增多了還是減少了?增或減了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù),偶函數(shù)g(x)在區(qū)間[0,+∞)的圖像與f(x)的圖像重合,設(shè)a>b>0,給出下列不等式:
f(b)-f(-a)>g(a)-g(-b)  、f(b)-f(-a)<g(a)-g(-b
f(a)-f(-b)>g(b)-g(-a)   ④f(a)-f(-b)<g(b)-g(-a)
其中成立的是(    )
A.①與④B.②與③C.①與③D.②與④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

具有性質(zhì)“對任意x,y∈R,滿足f(x+y)=f(x)+f(y)”的函數(shù)f(x)是( 。
A.f(x)=πxB.f(x)=log0.6xC.f(x)=5xD.f(x)=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)對于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時f(x)<0,f(1)=-2.
(1)求f(0);
(2)證明f(x)是奇函數(shù);
(3)試問在x∈[-3,3]時f(x)是否有最大、最小值?如果有,請求出來,如果沒有,說明理由;
(4)解不等式
1
2
f(x2)-f(x)>
1
2
f(3x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(  )
A.>0B.>-3C.<1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的函數(shù)滿足時,
                B               C          D  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

奇函數(shù)滿足,當(dāng)時,
(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域為R的函數(shù)滿足
(I)若,求;又若,求;
(II)設(shè)有且僅有一個實數(shù),使得,求函數(shù)的解析表達式

查看答案和解析>>

同步練習(xí)冊答案