已知是兩條不同的直線,是三個不同的平面,下列命題中錯誤的是(  )
A.若,則
B.若,,則
C.若,則
D.若是異面直線,,,則
C

試題分析:因為,垂直于同一直線的兩平面平行,所以,A正確;
因為,平面平行具有“傳遞性”,所以,B正確;
由平面平行的判定定理可知,若,則,不正確;
由平面平行的判定定理可知,若是異面直線,,,則,正確,故選C。
點評:簡單題,解答此類問題,牢記判定定理、性質(zhì)定理是基礎(chǔ),借助于模型,結(jié)合“排除法”,則體現(xiàn)靈活性。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點,D為AC的中點.

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,,.

(Ⅰ)求證:平面⊥平面;
(Ⅱ)若二面角的余弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,,,設(shè)頂點A在底面上的射影為R.
(Ⅰ)求證: ;
(Ⅱ)設(shè)點在棱上,且,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,平面平面,,. 過點,垂足為,點,分別為棱,的中點.

求證:(1)平面平面;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正四棱柱中,分別是的中點,的中點,點在四邊形上或其內(nèi)部運動,且使,對于下列命題:①點可以與點重合;②點可以與點重合;③點可以在線段上;④點可以與點重合.
其中正確命題的序號是            (把你認為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二面角均為,,則下列不可能成立的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體(所有棱長都相等)中,分別是的中點,下面四個結(jié)論中不成立的是(  )
A.平面平面B.平面
C.平面平面D.平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為兩條直線,為兩個平面,下列說法正確的是(  )
A.若,則
B.若
C.
D.若,,則

查看答案和解析>>

同步練習(xí)冊答案