【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),則b的取值范圍為( )
A.
B.(2﹣ ,2+ )
C.[1,3]
D.(1,3)
【答案】B
【解析】解:∵f(a)=g(b),
∴ea﹣1=﹣b2+4b﹣3
∴﹣b2+4b﹣2=ea>0
即b2﹣4b+2<0,求得2﹣ <b<2+
故選B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且acosC﹣ =b.
(1)求角A的大小;
(2)若a=1,求△ABC的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)().
(1)若,求不等式的解集;
(2)若對(duì)于任意的,,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和,且是2與的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE, ,F(xiàn)為線段DE上的一點(diǎn).
(1)求證:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F與二面角F﹣BC﹣D的大小相等,求DF的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)且離心率為的橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓的左準(zhǔn)線與軸的交點(diǎn),過點(diǎn)的直線與橢圓相交于兩點(diǎn),記橢圓的左,右焦點(diǎn)分別為,上下兩個(gè)頂點(diǎn)分別為.當(dāng)線段的中點(diǎn)落在四邊形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的圖象與x軸有且僅有一個(gè)交點(diǎn),求b2+c2+2的取值范圍;
(2)在b≥0的條件下,若f(x)的定義域[﹣1,0],值域也是[﹣1,0],符合上述要求的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , , 為棱的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com