【題目】拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線分別交拋物線C于A(x1 , y1)B(x2 , y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足 ,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)λ=1時,若點(diǎn)P的坐標(biāo)為(1,﹣1),求∠PAB為鈍角時點(diǎn)A的縱坐標(biāo)y1的取值范圍.

【答案】解:(Ⅰ)由拋物線C的方程y=ax2(a<0)得,焦點(diǎn)坐標(biāo)為(0, ),準(zhǔn)線方程為y=﹣
(Ⅱ)證明:設(shè)直線PA的方程為y﹣y0=k1(x﹣x0),直線PB的方程為y﹣y0=k2(x﹣x0).
點(diǎn)P(x0 , y0)和點(diǎn)A(x1 , y1)的坐標(biāo)是方程組 的解.
將②式代入①式得ax2﹣k1x+k1x0﹣y0=0,于是x1+x0= ,故x1= ﹣x0 ③.
又點(diǎn)P(x0 , y0)和點(diǎn)B(x2 , y2)的坐標(biāo)是方程組 的解.
將⑤式代入④式得ax2﹣k2x+k2x0﹣y0=0.于是x2+x0= ,故x2= ﹣x0
由已知得,k2=﹣λk1 , 則x2=﹣ ﹣x0 . ⑥
設(shè)點(diǎn)M的坐標(biāo)為(xM , yM),由 ,可得 xM=
將③式和⑥式代入上式得xM= =﹣x0 ,
即xM+x0=0.所以線段PM的中點(diǎn)在y軸上.
(Ⅲ)因為點(diǎn)P(1,﹣1)在拋物線y=ax2上,所以a=﹣1,拋物線方程為y=﹣x2
由③式知x1=﹣k1﹣1,代入y=﹣x2 得 y1=﹣(k1+1)2
將λ=1代入⑥式得 x2=k1﹣1,代入y=﹣x2 y2=﹣(k2+1)2
因此,直線PA、PB分別與拋物線C的交點(diǎn)A、B的坐標(biāo)為A(﹣k1﹣1,﹣k12﹣2k1﹣1),B(k1﹣1,﹣k12+2k1﹣1).
于是 =(k1+2,k12+2k1), =(2k1 , 4k1),
=2k1(k1+2)+4k1(k12+2k1)=2(k1+2)(2+k11).
因∠PAB為鈍角且P、A、B三點(diǎn)互不相同,故必有 <0./span>
求得k1的取值范圍是k1<﹣2,或﹣ <k1<0.
又點(diǎn)A的縱坐標(biāo)y1滿足y1=﹣(k1+1)2 , 故當(dāng)k1<﹣2時,y1<﹣1;當(dāng)﹣ <k1<0時,﹣1<y<﹣
即y1∈(﹣∞,﹣1)∪(﹣1,﹣ ).
【解析】(Ⅰ)數(shù)形結(jié)合,依據(jù)拋物線C的標(biāo)準(zhǔn)方程寫焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.(Ⅱ)先依據(jù)條件求出點(diǎn)M的橫坐標(biāo),利用一元二次方程根與系數(shù)的關(guān)系,證明xM+x0=0.(Ⅲ)∠PAB為鈍角時,必有 <0.用k1表示y1 , 通過k1的范圍來求y1的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 , ,女隊每人答對的概率都是 ,設(shè)每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數(shù)學(xué)期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠BAD=60°,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則 的最大值為(

A.3
B.2
C.6
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn), 是橢圓上的點(diǎn),設(shè)動點(diǎn)滿足.

1)求動點(diǎn)的軌跡的方程;

2)若直線與曲線相交于 兩個不同點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直二面角中,四邊形ABCD是邊長為2的正方形,,FCE上的點(diǎn),且平面ACE

求證:平面BCE;

求二面角的余弦值;

求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題,不等式恒成立;命題,不等式恒成立.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若為假,為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年年底,某城市地鐵交通建設(shè)項目已經(jīng)基本完成,為了解市民對該項目的滿意度,分別從不同地鐵站點(diǎn)隨機(jī)抽取若干市民對該項目進(jìn)行評分(滿分分),繪制如下頻率分布直方圖,并將分?jǐn)?shù)從低到高分為四個等級:

滿意度評分

低于

60分

60分

到79分

80分

到89分

不低

于90分

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有人.

(1)求頻率分布于直方圖中的值,及評分等級不滿意的人數(shù);

(2)在等級為不滿意市民中,老年人占,中青年占,現(xiàn)從該等級市民中按年齡分層抽取人了解不滿意的原因,并從中選取人擔(dān)任整改督導(dǎo)員,求至少有一位老年督導(dǎo)員的概率;

(3)相關(guān)部門對項目進(jìn)行驗收,驗收的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于,否則該項目需進(jìn)行整改,根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過驗收,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人在連續(xù)7天的定點(diǎn)投籃的分?jǐn)?shù)統(tǒng)計如下:在上述統(tǒng)計數(shù)據(jù)的分析中,一部分計算如右圖所示的算法流程圖(其中 是這7個數(shù)據(jù)的平均數(shù)),則輸出的S的值是(

觀測次數(shù)i

1

2

3

4

5

6

7

觀測數(shù)據(jù)ai

5

6

8

6

8

8

8


A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案