【題目】如圖,四棱錐PABCD的底面是梯形.BCADABBCCD1,AD2,,

(Ⅰ)證明;ACBP;

(Ⅱ)求直線AD與平面APC所成角的正弦值.

【答案】(Ⅰ)見(jiàn)解析(Ⅱ)

【解析】

(I)的中點(diǎn),連接,通過(guò)證明平面得出;

(II)為原點(diǎn)建立坐標(biāo)系,求出平面的法向量,通過(guò)計(jì)算的夾角得出與平面所成角.

I)證明:取AC的中點(diǎn)M,連接PM,BM,

ABBCPAPC,

ACBM,ACPM,又BMPMM

AC⊥平面PBM,

BP平面PBM

ACBP

II)解:∵底面ABCD是梯形.BCAD,ABBCCD1AD2,

∴∠ABC120°,

ABBC1,∴AC,BM,∴ACCD,

ACBM,∴BMCD

PAPC,CM,∴PM,

PB,∴cosBMP,∴∠PMB120°

M為原點(diǎn),以MB,MC的方向?yàn)?/span>x軸,y軸的正方向,

以平面ABCDM處的垂線為z軸建立坐標(biāo)系Mxyz,如圖所示:

A0,,0),C0,0),P,0),D(﹣1,,0),

(﹣1,,0),0,,0),,,),

設(shè)平面ACP的法向量為x,y,z),則,即

x,0,1),

cos,

∴直線AD與平面APC所成角的正弦值為|cos,|

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,平面,,.

1)求證:平面

2)求證:在線段上存在一點(diǎn),使得,并指明點(diǎn)的位置;

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,平面平面,四邊形是菱形,.

1)若,證明:;

2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,短軸長(zhǎng)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),則在軸上是否存在一個(gè)定點(diǎn)使得直線的斜率互為相反數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面是平行四邊形, 點(diǎn),分別在棱,上,且.

1)求證:平面;

2)若,,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,△ABC是以AC為斜邊的等腰直角三角形,△BCD是等邊三角形.如圖②,將△BCD沿BC折起,使平面BCD⊥平面ABC,記BC的中點(diǎn)為E,BD的中點(diǎn)為M,點(diǎn)F、N在棱AC上,且AF3CF,C.

1)試過(guò)直線MN作一平面,使它與平面DEF平行,并加以證明;

2)記(1)中所作的平面為α,求平面α與平面BMN所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對(duì)任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對(duì)任意的,都有關(guān)于對(duì)稱。

其中所有正確的結(jié)論序號(hào)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過(guò)軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案