【題目】甲、乙兩艘輪船都要在某個泊位停靠6小時,假定它們在一晝夜的時間段中隨機到達,則這兩艘船中至少有一艘在停靠泊位時必須等待的概率是

【答案】
【解析】解:設(shè)甲到達的時刻為x,乙到達的時刻為y則所有的基本事件構(gòu)成的區(qū)域
Ω滿足0≤x≤24且0≤y≤24,
這兩艘船中至少有一艘在?坎次粫r必須等待包含的基本事件構(gòu)成的區(qū)域
A滿足0≤x≤24且0≤y≤24且|x﹣y|≤6,作出對應(yīng)的平面區(qū)域如圖:
這兩艘船中至少有一艘在?坎次粫r必須等待的概率P(A)=
故答案為:

設(shè)出甲、乙到達的時刻,列出所有基本事件的約束條件同時列出這兩艘船中至少有一艘在?坎次粫r必須等待約束條件,利用線性規(guī)劃作出平面區(qū)域,利用幾何概型概率公式求出概率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=a2x+ (a,b,c為常數(shù),且a>0,c>0).
(1)當a=1,b=0時,求證:|f(x)|≥2c;
(2)當b=1時,如果對任意的x>1都有f(x)>a恒成立,求證:a+2c>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園,種植桃樹,已知角A為120°.現(xiàn)在邊界AP,AQ處建圍墻,PQ處圍柵欄.

(1)若∠APQ=15°,AP與AQ兩處圍墻長度和為100( +1)米,求柵欄PQ的長;
(2)已知AB,AC的長度均大于200米,若水果園APQ面積為2500 平方米,問AP,AQ長各為多少時,可使三角形APQ周長最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}是有窮數(shù)列,且a1∈R,公差d=2,記{an}的所有項之和為S,若a12+S≤96,則數(shù)列{an}至多有項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD為菱形,且∠BCD=60°,P為AD1的中點,Q為BC的中點

(1)求證:PQ∥平面D1DCC1
(2)求證:DQ⊥平面B1BCC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記等比數(shù)列{an}前n項和為Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=3,bn+1﹣3bn=3an , 求數(shù)列{bn}的前n項和Bn;
(3)刪除數(shù)列{an}中的第3項,第6項,第9項,…,第3n項,余下的項按原來的順序組成一個新數(shù)列,記為{cn},{cn}的前n項和為Tn , 若對任意n∈N* , 都有 >a,試求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)據(jù)x1 , x2 , x3 , …,x100是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上馬云2016年10月份的收入x101(約100億元),則相對于x、y、z,這101個月收入數(shù)據(jù)(
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)已知數(shù)列, )滿足其中,

1)當時,求關(guān)于的表達式,并求的取值范圍;

2)設(shè)集合

, ,求證: ;

是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案