【題目】數(shù)列中,已知對任意都成立,數(shù)列的前項和為.(這里均為實數(shù))

(1)若是等差數(shù)列,求的值;

(2)若,求

(3)是否存在實數(shù),使數(shù)列是公比不為的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【答案】(1)(2)(3)

【解析】試題分析:(1)由,解得(2)由題意可得

既兩項一并是常數(shù)列,所以分奇偶處理此問。(3)等差中項的三種情況分類討論可求解。

試題解析:(1)若是等差數(shù)列,則對任意,有

,故

(2)當時, ,即, ,

所以,當是偶數(shù)時,

是奇數(shù)時, ,

綜上, ). 

(3)若是等比數(shù)列 ,則公比,由題意,故 ,

為等差中項,則,即 ,解得(舍去);

為等差中項,則,即 ,因,故解得, , ;

為等差中項,則,即,

因為,解得

綜上,存在實數(shù)滿足題意,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= ﹣lg(x﹣1)的定義域是(
A.[2,+∞)
B.(﹣∞,2)
C.(1,2]
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本公司計劃2008年在甲,乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲,乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘,規(guī)定甲,乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元,問該公司如何分配在甲,乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下三個命題中:
①設有一個回歸方程 =2﹣3x,變量x增加一個單位時,y平均增加3個單位;
②兩個隨機變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;
③在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內取值的概率為0.4,則ξ在(0,2)內取值的概率為0.8.
其中真命題的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},則A∩B=(
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當x∈(﹣2,0)時,f(x)=2x , 則f(2016)﹣f(2015)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)求函數(shù)y=2x+4 ,x∈[0,2]的值域;
(2)化簡:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是關于復數(shù)z= 的四個命題:p1:|z|=2,p2:z2=2i,p3:z的共軛復數(shù)為1+i,p4:z的虛部為﹣1.
其中的真命題為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調查,得到如下的列聯(lián)表.

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為 ,
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列、數(shù)學期望以及方差.
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案