將6位志愿者分配到甲、已、丙3個志愿者工作站,每個工作站2人,由于志愿者特長不同,A不能去甲工作站,B只能去丙工作站,則不同的分配方法共有
 
種.
考點(diǎn):計數(shù)原理的應(yīng)用
專題:排列組合
分析:利用分步計算原理,根據(jù)特殊元素優(yōu)先安排的原則,計算即可.
解答: 解:根據(jù)A不能去甲工作站,B只能去丙工作站,所以甲站只能從余下的4人中任選2人,有
C
2
4
種,每個工作站2人,所以丙站只能從余下的3人中,任選1人有
C
1
3
,余下的兩人到乙站,不同的分配方法共有
C
2
4
•C
1
3
=18種.
故答案為18.
點(diǎn)評:本題主要考查了分步計算原理,如何分步是解決本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-
m
x
,g(x)=2lnx.
(Ⅰ)當(dāng)m=2時,若直線l過點(diǎn)(0,-4)且與曲線y=f(x)相切,求直線l的線方程;
(Ⅱ)當(dāng)m=1時,判斷方程f(x)=g(x)在區(qū)間(1,+∞)上有無實根;
(Ⅲ)若x∈(1,e]時,不等式f(x)-g(x)<2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x+y>2
|x-y|<1
,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x4+ax2+2在點(diǎn)(-1,a+3)處的切線斜率為8,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)2+i的模等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx與曲線y=2ex相切,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過原點(diǎn)且與函數(shù)y=ex(e為自然對數(shù)的底數(shù))的圖象相切的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,則(1+i)(2+i)=( 。
A、1+3iB、4+3i
C、3+3iD、1

查看答案和解析>>

同步練習(xí)冊答案