給出下列四個(gè)命題:
①若直線(xiàn)l⊥平面α,l∥平面β,則α⊥β;
②若平面α內(nèi)有不共線(xiàn)的三點(diǎn)到平面β的距離相等,則α∥β;
③若一個(gè)二面角的兩個(gè)半平面所在的平面分別垂直于另一個(gè)二面角的兩個(gè)半平面所在的平面,則這兩個(gè)二面角的平面角相等或互為補(bǔ)角;
④兩直線(xiàn)與同一平面成等角,則這兩直線(xiàn)平行.
其中正確命題的個(gè)數(shù)有( 。
分析:可以從正方體去觀(guān)察理解,①?gòu)目臻g兩個(gè)平面的位置關(guān)系判斷.②從兩平面的位置關(guān)系判斷;③一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)角的平面角相等或互補(bǔ).可借圖形進(jìn)行判斷;④由正方體中直線(xiàn)進(jìn)行判斷.
解答:解:①若直線(xiàn)l⊥平面α,l∥平面β,根據(jù)面面垂直的判斷可知:α⊥β;正確;
②若平面α內(nèi)有不共線(xiàn)的三個(gè)點(diǎn)到平面β距離相等,可能平行,也可能相交,不正確;
③一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)角的平面角相等或互補(bǔ).錯(cuò)誤命題,如圖此種情況下,兩個(gè)二面角沒(méi)有關(guān)系.
④兩直線(xiàn)與同一平面成等角,則這兩直線(xiàn)也可能相交、異面或平行,如圖,在正方體中,AD′和CD′與底面成等角,但這兩條直線(xiàn)相交,故④錯(cuò).
故選B
點(diǎn)評(píng):本題主要考查了兩直線(xiàn)的位置關(guān)系,兩平面的位置關(guān)系及線(xiàn)面垂直的性質(zhì)定理,平面的基本性質(zhì)及推論等概念,作為客觀(guān)題要多借助空間幾何體來(lái)判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知a、b是兩條不重合的直線(xiàn),α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線(xiàn)BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線(xiàn)EF是異面直線(xiàn)AC與BD的公垂線(xiàn);③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱(chēng)中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案