【題目】下列說法錯(cuò)誤的是( 。
A. 命題:存在,使,則非:對任意,都有;
B. 如果命題“或”與命題“非”都是真命題,那么命題一定是真命題;
C. 命題“若都是偶數(shù),則是偶數(shù)”的逆否命題是“若不是偶數(shù),則不是偶數(shù)”;
D. 命題“存在,”是假命題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù):f(x)=x2﹣mx﹣n(m, n∈R).
(1)若m+n=0,解關(guān)于x的不等式f(x)≥x(結(jié)果用含m式子表示);
(2)若存在實(shí)數(shù)m,使得當(dāng)x∈[1,2]時(shí),不等式x≤f(x)≤4x恒成立,求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全國第五個(gè)“扶貧日”到來之前,某省開展“精準(zhǔn)扶貧,攜手同行”的主題活動(dòng),某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.鎮(zhèn)有基層干部60人,鎮(zhèn)有基層干部60人,鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從三鎮(zhèn)共選40名基層干部,統(tǒng)計(jì)他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,,繪制成如圖所示的頻率分布直方圖.
(1)求這40人中有多少人來自鎮(zhèn),并估計(jì)三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)如果把走訪貧困戶達(dá)到或超過25戶視為工作出色,以頻率估計(jì)概率,從三鎮(zhèn)的所有基層干部中隨機(jī)選取3人,記這3人中工作出色的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較注射兩種藥物產(chǎn)生的皮膚皰疹的面積,選200只家兔作試驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.表1和表2所示的分別是注射藥物和藥物后皮膚皰疹面積的頻數(shù)分布(皰疹面積單位: )
表1
皰疹面積 | ||||
頻數(shù) | 30 | 40 | 20 | 10 |
表2
皰疹面積 | |||||
頻數(shù) | 10 | 25 | 20 | 30 | 15 |
(1)完成圖20-3和圖20-4所示的分別注射藥物后皮膚皰疹面積的頻率分布直方圖,并求注射藥物后皰疹面積的中位數(shù)
(2)完成下表所示的列聯(lián)表,并回答能否有99.9%的把握認(rèn)為注射藥物后的皰疹面積與注射藥物的皰疹面積有差異.(的值精確到0.01)
皰疹面積小于 | 皰疹面積不小于 | 合計(jì) | |
注射藥物A | ______ | ______ | |
注射藥物B | ______ | ______ | |
合計(jì) |
附:.
P() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.811 | 5.021 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用二分法求函數(shù)的一個(gè)正零點(diǎn)的近似值(精確度為0.1)時(shí),依次計(jì)算得到如下數(shù)據(jù):f(1)=–2,f(1.5)=0.625,f(1.25)≈–0.984,f(1.375)≈–0.260,關(guān)于下一步的說法正確的是( )
A. 已經(jīng)達(dá)到精確度的要求,可以取1.4作為近似值
B. 已經(jīng)達(dá)到精確度的要求,可以取1.375作為近似值
C. 沒有達(dá)到精確度的要求,應(yīng)該接著計(jì)算f(1.4375)
D. 沒有達(dá)到精確度的要求,應(yīng)該接著計(jì)算f(1.3125)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且滿足不等式22a+1>25a﹣2.
(1)求實(shí)數(shù)a的取值范圍;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,過點(diǎn)作斜率為的直線交橢圓于兩點(diǎn),當(dāng)直線垂直于軸時(shí),.
(1)求橢圓的方程
(2)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),若,求證:
(1)方程有實(shí)根.
(2)若﹣2<<﹣1且設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)根,則≤|x1﹣x2|<
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com