過點A(1,0)且與已知直線x-y+1=0平行的直線方程是
 
考點:直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:直接由直線方程的點斜式求得過點A(1,0)且與已知直線x-y+1=0平行的直線方程.
解答: 解:∵直線x-y+1=0的斜率為1,
∴過點A(1,0)且與已知直線x-y+1=0平行的直線方程為:
y-0=1×(x-1),即x-y-1=0.
故答案為:x-y-1=0.
點評:本題考查直線方程的一般式與直線平行的關(guān)系,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=y,直線l與拋物線C交于A、B不同兩點,且
OA
+
OB
=(p,6).
(1)求拋物線的焦點坐標和準線方程;
(2)設(shè)直線m為線段AB的中垂線,請判斷直線m是否恒過定點?若是,請求出定點坐標;若不是,請說明理由;
(3)記點A、B在x軸上的射影分別為A1、B1,記曲線E是以A1B1為直徑的圓,當直線l與曲線E的相離時,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點,焦點在x軸上的雙曲線的一條漸近線為y=
3
4
x,焦點到漸近線的距離為3,則該雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對一切x∈R,不等式4x+(a-1)2x+1≥0恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有四種顏色供選擇給四棱錐的八條棱涂色,要求有公共頂點的棱顏色不同,則共有
 
種不同的涂色方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+
1
x
6的展開式中的常數(shù)項等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x+2)=
sinx,x≥0
log2(-x),x<0.
,則f(
21π
4
+2)•f(-14)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-4x-4y=0,直線l:
3
x+y+6-2
3
=0,在圓C上任取一點A,則點A到直線l的距離小于2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為函數(shù)f(x)=
3
sin(ωx+φ)(ω>0)的部分圖象,B、C分別為圖象的最高點和最低點,若
AB
BC
=|
AB
|2,則ω=( 。
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

同步練習(xí)冊答案