【題目】基于移動互聯(lián)技術的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,帶給人們新的出行體驗某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如下表:

月份

月份代碼x

1

2

3

4

5

6

市場占有率

11

13

16

15

20

21

請在給出的坐標紙中作出散點圖,并用相關系數(shù)說明可用線性回歸模型擬合月度市場占有率y與月份代碼x之間的關系;

y關于x的線性回歸方程,并預測該公司2018年2月份的市場占有率;

根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,現(xiàn)有采購成本分別為1000元輛和800元輛的AB兩款車型報廢年限各不相同考慮到公司的經(jīng)濟效益,該公司決定先對兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數(shù)表如下:

報廢年限

車型

1年

2年

3年

4年

總計

A

10

30

40

20

100

B

15

40

35

10

100

經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù)如果你是該公司的負責人,你會選擇采購哪款車型?

參考數(shù)據(jù):,

參考公式:相關系數(shù),

回歸直線方程為其中:,

【答案】(1)見解析;(2),估計2018年2月的市場占有率為.(3)見解析

【解析】

(1)畫出散點圖,求出相關系數(shù),判斷線性相關性即可;(2)求出回歸方程的系數(shù),求出回歸方程,代入函數(shù)值檢驗即可;(3)求出分布列,求出數(shù)學期望比較即可判斷.

散點圖如圖所示

,

,

所以兩變量之間具有較強的線性相關關系,

故可用線性回歸模型擬合兩變量之間的關系.

,

回歸直線方程為,

2018年2月的月份代碼,

所以估計2018年2月的市場占有率為

用頻率估計概率,A款單車的利潤X的分布列為:

X

0

500

1000

P

B款單車的利潤Y的分布列為:

Y

200

700

1200

P

以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),故應選擇B款車型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

(1)求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某辦公室有5位教師,只有3臺電腦供他們使用,教師是否使用電腦是相互獨立的.

1)若上午某一時段、、三位教師需要使用電腦的概率分別是、、,求這一時段、、三位教師中恰有2位教師使用電腦的概率;

2)若下午某一時段每位教師需要使用電腦的概率都是,求這一時段辦公室電腦數(shù)無法滿足需求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為“中學數(shù)學聯(lián)賽”選拔人才,分初賽和復賽兩個階段進行,規(guī)定:分數(shù)不小于本次考試成績中位數(shù)的具有復賽資格,某校有900名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

(1)求獲得復賽資格應劃定的最低分數(shù)線;

(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間各抽取多少人?

(3)從(2)抽取的7人中,選出4人參加全市座談交流,設表示得分在中參加全市座談交流的人數(shù),學校打算給這4人一定的物質(zhì)獎勵,若該生分數(shù)在給予500元獎勵,若該生分數(shù)在給予800元獎勵,用Y表示學校發(fā)的獎金數(shù)額,求Y的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,已知,

求證:平面平面ABCD;

求直線AE與平面CED的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線的參數(shù)方程為:為參數(shù),在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為:,直線與曲線交于A,B兩點,

求曲線的普通方程及的最小值;

若點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于隨機變量及分布的說法正確的是(

A.拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)是隨機變量

B.某人射擊時命中的概率為0.5,此人射擊三次命中的次數(shù)服從兩點分布

C.離散型隨機變量的分布列中,隨機變量取各個值的概率之和可以小于1

D.離散型隨機變量的各個可能值表示的事件是彼此互斥的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點 ,且,求;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

同步練習冊答案