• 對于在區(qū)間[a,b]上有意義的兩具函數(shù)f(x)與g(x),如果對于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在區(qū)間[a,b]上是接近的,若函數(shù)y=x2-3x+4與函數(shù)y=2x-3在區(qū)間[a,b]上是接近的,則該區(qū)間可以是
     
    分析:根據(jù)題中的新定義可知,若函數(shù)y=x2-3x+4與函數(shù)y=2x-3在區(qū)間[a,b]上是接近的,得兩函數(shù)解析式之差的絕對值小于等于1,分之差小于等于1,大于等于-1兩種情況分別求出兩不等式的解集,然后求出兩解集的交集即可求出x的取值范圍即為新定義中的區(qū)間.
    解答:解:根據(jù)函數(shù)y=x2-3x+4與函數(shù)y=2x-3在區(qū)間[a,b]上是接近的,
    可得:|(x2-3x+4)-(2x-3)|≤1,
    x2-5x+6≤0①
    x2-5x+8≥0②

    由①得:(x-2)(x-3)≤0,解得:2≤x≤3;
    由②得:△=b2-4ac=25-32=-7<0,所以x取任意實數(shù),
    綜上,x∈[2,3].
    故答案為:[2,3]
    點評:此題考查學生掌握新定義并靈活運用新定義化簡求值,是一道綜合題.
    練習冊系列答案
    相關習題

    科目:高中數(shù)學 來源: 題型:

    對于在區(qū)間[a,b]上有意義的兩個函數(shù)m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,若函數(shù)m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數(shù)”,則b-a的最大值為
     

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則a的取值范圍是
    [0,1]
    [0,1]

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(cx+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則c的取值范圍是( 。

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    對于在區(qū)間[a,b]上有意義的兩個函數(shù)m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,若函數(shù)m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數(shù)”,則密切區(qū)間為
    [2,3]
    [2,3]

    查看答案和解析>>

    同步練習冊答案