【題目】如圖,四棱錐中,平面,,,,為的中點,與相交于點.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】記拋物線的焦點為,點在拋物線上,,斜率為的直線與拋物線交于兩點.
(1)求的最小值;
(2)若,直線的斜率都存在,且;探究:直線是否過定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系 中,曲線 的參數方程為 (為參數),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線 的極坐標方程為 .
(1)求直線和曲線的普通方程;
(2)已知點,且直線和曲線交于兩點,求 的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,動點P到定點F(1,0)的距離比到定直線x=-2的距離小1.
(1)求動點P的軌跡C的方程;
(2)若直線l與(1)中軌跡C交于A,B兩點,通過A和原點O的直線交直線x=-1于D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設為邊長為1的正方形內部及其邊界的點構成的集合.從中的任意點P作x軸、y軸的垂線,垂足分別為,.所有點構成的集合為M,M中所有點的橫坐標的最大值與最小值之差記為;所有點構成的集合為N,N中所有點的縱坐標的最大值與最小值之差記為.給出以下命題:
①的最大值為:②的取值范圍是;③恒等于0.
其中所有正確結論的序號是()
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位女教師的概率.
附:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com