【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測得身高情況的統(tǒng)計(jì)圖如圖所示:
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
【答案】(Ⅰ)400
(Ⅱ)
(Ⅲ)
【解析】試題分析:(1)根據(jù)頻率分布直方圖,求出樣本中男生人數(shù),再由分層抽樣比例,估計(jì)全校男生人數(shù);(2)由統(tǒng)計(jì)圖計(jì)算出樣本中身高在170~185cm之間的學(xué)生數(shù),根據(jù)樣本數(shù)據(jù)計(jì)算對(duì)應(yīng)的概率;(3)利用列舉法計(jì)算基本事件數(shù)以及對(duì)應(yīng)的概率
試題解析:(Ⅰ)樣本中男生人數(shù)為40 ,由分層抽樣比例為10%估計(jì)全校男生人數(shù)為400.
(Ⅱ)由統(tǒng)計(jì)圖知,樣本中身高在170~185cm之間的學(xué)生有52人,樣本容量為70 ,所以樣本中學(xué)生身高在170~185cm之間的頻率故有估計(jì)該校學(xué)生身高在170~185cm之間的概率p=
(Ⅲ)樣本中身高在180~185cm之間的男生有4人,設(shè)其編號(hào)為①,②,③,④,
樣本中身高在185~190cm之間的男生有2人,設(shè)其編號(hào)為⑤,⑥,
從上述6人中任取2人的樹狀圖為:
故從樣本中身高在180~190cm之間的男生中任選2人的所有可能結(jié)果數(shù)為15,至少有1人身高在185~190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列直線方程
(1)求過點(diǎn)且與圓相切的直線方程;
(2)一直線經(jīng)過點(diǎn),被圓截得的弦長為8,求此弦所在直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且=,求tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列 中, ,且 成等差數(shù)列.
(1)求等比數(shù)列 的通項(xiàng)公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項(xiàng)和 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cosB=,a=5c.
(1)求sinC的值;
(2)若△ABC的面積S=sinAsinC,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列 中, ,數(shù)列 中, .
(1)求數(shù)列 , 的通項(xiàng)公式;
(2)若 ,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求對(duì)稱軸是軸,焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程;
(2)過拋物線焦點(diǎn)的直線它交于兩點(diǎn),求弦的中點(diǎn)的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com