精英家教網 > 高中數學 > 題目詳情

【題目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),則cx2+bx+a<0的解集是(
A.(﹣3,
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2,
D.(﹣∞,﹣2)∪( ,+∞)

【答案】A
【解析】解:∵關于x的一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),
,∴b=﹣ a,c=﹣ a,
∴不等式cx2+bx+a<0可化為﹣ ax2 ax+a<0,即2x2+5x﹣3<0,
解得x∈(﹣3, ).
故選:A.
【考點精析】解答此題的關鍵在于理解解一元二次不等式的相關知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規(guī)律:當二次項系數為正時,小于取中間,大于取兩邊.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結論正確的是

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個化肥廠生產甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:

原料
種類

磷酸鹽(單位:噸)

硝酸鹽(單位:噸)

4

20

2

20

現庫存磷酸鹽8噸、硝酸鹽60噸,計劃在此基礎上生產若干車皮的甲、乙兩種混合肥料.
(1)設x,y分別表示計劃生產甲、乙兩種肥料的車皮數,試列出x,y滿足的數學關系式,并畫出相應的平面區(qū)域;
(2)若生產1車皮甲種肥料,利潤為3萬元;生產1車皮乙種肥料,利潤為2萬元.那么分別生產甲、乙兩種肥料多少車皮,能夠產生最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的各項均為正數,前n和為Sn , 且Sn= (n∈N*).
(1)求證:數列{an}是等差數列;
(2)設bn=an3n , 求數列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數.
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有兩個不同的解,求實數a的范圍.
(II)當|f(0)|≤2,|f(1)|≤2時,求|f(x)|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數=lnx+ax2+(2a+1)x

(1)討論的單調性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)當a=1,b=2時,求函數f(x)(x≠1)的值域,
(2)當a=0時,求f(x)<1時,x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校組織學生參加某項比賽,參賽選手必須有很好的語言表達能力和文字組織能力.學校對10位已入圍的學生進行語言表達能力和文字組織能力的測試,測試成績分為三個等級,其統(tǒng)計結果如下表:

語言表達能力

文字組織能力

2

2

0

1

1

0

1

由于部分數據丟失,只知道從這10位參加測試的學生中隨機抽取一位,抽到語言表達能力或文字組織能力為的學生的概率為.

(Ⅰ)求, 的值;

(Ⅱ)從測試成績均為的學生中任意抽取2位,求其中至少有一位語言表達能力或文字組織能力為的學生的概率.

查看答案和解析>>

同步練習冊答案