【題目】如圖,在四棱錐PABCD中,已知PA平面ABCD,且四邊形ABCD為直角梯形,ABC=∠BAD,PAAD=2,ABBC=1,點M、E分別是PA、PD的中點

(1)求證:CE//平面BMD

(2)Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.

【答案】(1)見解析;(2).

【解析】

(1) 連接ME,通過對邊關(guān)系得到四邊形為平行四邊形,所以,進而得到線面平行;(2)建立坐標系,進而得到直線PA的方向向量,和面的法向量,進而得到線面角.

(1)連接ME,因為點分別是的中點,所以,所以,所以四邊形為平行四邊形,所以.又因為平面,平面,所以平面.

(2)如圖,以為坐標原點建立空間坐標系,則

,

設(shè)平面的法向量為,列方程組求得其中一個法向量為,設(shè)直線與平面所成角大小為,于是

,

進而求得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓是橢圓內(nèi)任一點.設(shè)經(jīng)過的兩條不同直線分別于橢圓交于點的斜率分別為

1)當經(jīng)過橢圓右焦點且中點時,求:

①橢圓的標準方程;

②四邊形面積的取值范圍.

2)當時,若點重合于點,且.求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.

(Ⅰ)若,求曲線的方程;

(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;

(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)的焦點到點的距離為.

1)求拋物線的方程;

2)過點作拋物線的兩條切線,切點分別為,,點分別在第一和第二象限內(nèi),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健身館某項目收費標準為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標準如下:

消費次數(shù)

1

2

3

不少于4

收費比例

0.95

0.90

0.85

0.80

現(xiàn)隨機抽取了100位會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:

消費次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計1位會員至少消費兩次的概率

2)某會員消費4次,求這4次消費獲得的平均利潤;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于MN兩點.

1)若點P的極坐標為(2,π),求|PM||PN|的值;

2)求曲線C的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+a2+…+anan+12.

1)若a12,求數(shù)列{an}的通項公式;

2)若數(shù)列1,a2,a4,b1,b2,bn成等差數(shù)列,求數(shù)列{bn}的前n項和為Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一高二各班體育節(jié)的表現(xiàn)情況,統(tǒng)計了高一高二各班的得分情況并繪成如圖所示的莖葉圖,則下列說法正確的是(

A.高一年級得分中位數(shù)小于高二年級得分中位數(shù)

B.高一年級得分方差大于高二年級得分方差

C.高一年級得分平均數(shù)等于高二年級得分平均數(shù)

D.高一年級班級得分最低為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的左、右焦點分別為,作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

同步練習(xí)冊答案