【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系.曲線C2的極坐標方程為ρsin(θ﹣ )= m
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)若曲線C1與曲線C2有公共點,求實數(shù)m的取值范圍.

【答案】
(1)解:曲線C1的參數(shù)方程為 ,消去參數(shù),可得y=x2(﹣2≤x≤2)

曲線C2的極坐標方程為ρsin(θ﹣ )= m,直角坐標方程為x﹣y+m=0


(2)解:聯(lián)立直線與拋物線可得x2﹣x﹣m=0,

∵曲線C1與曲線C2有公共點,

∴m=x2﹣x=(x﹣ 2 ,

∵﹣2≤x≤2,

∴﹣ ≤m≤6


【解析】(1)利用三種方程的轉(zhuǎn)化方法,求曲線C1的普通方程和曲線C2的直角坐標方程;(2)聯(lián)立直線與拋物線,利用曲線C1與曲線C2有公共點,求實數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱錐D﹣ABC側(cè)棱兩兩垂直,E為棱AD中點,平面α過點A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,則m,n所成角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為. 點為圓上任意一點, 為坐標原點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)記線段與橢圓交點為,求的取值范圍;

(Ⅲ)設(shè)直線經(jīng)過點且與橢圓相切, 與圓相交于另一點,點關(guān)于原點的對稱點為,試判斷直線與橢圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A、B是治療同一種疾病的兩種藥,用若干試驗組進行對比試驗.每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效.若在一個試驗組中,服用A有效的小白鼠的只數(shù)比服用B有效的多,就稱該試驗組為甲類組.設(shè)每只小白鼠服用A有效的概率為 ,服用B有效的概率為
(Ⅰ)求一個試驗組為甲類組的概率;
(Ⅱ)觀察3個試驗組,用ξ表示這3個試驗組中甲類組的個數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,平面.

(1)求證:;

(2)若點在線段上,且滿足,求證:平面

(3)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,點在直線上.數(shù)列 滿足 ,且,前11項和為.

(1)求數(shù)列、的通項公式;

(2)設(shè)是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程|2x3﹣8x|+mx=4有且僅有2個實數(shù)根,則實數(shù)m的取值范圍為(
A.(﹣∞,﹣2)∪(2,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣2,2)
D.(﹣1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式 >x的解集為(﹣∞,m).
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若關(guān)于x的方程|x﹣n|+|x+ |=m(n>0)有解,求實數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點.

若直線經(jīng)過點且與直線垂直,求直線的方程;

若直線經(jīng)過點且坐標原點到直線的距離等于3,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案