【題目】名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖所示:
(1)求頻率分布直方圖中實數(shù)的值;
(2)估計20名學(xué)生成績的平均數(shù);
(3)從成績在的學(xué)生中任選2人,求此2人的成績不都在中的概率.
【答案】(1);(2)分;(3)
【解析】
(1)根據(jù)頻率分布直方圖,以及頻率之和為1,列出方程,求解,即可得出結(jié)果;
(2)根據(jù)頻率分別直方圖,由每組的中間值乘以該組的頻率,再求和,即可得出結(jié)果;
(3)根據(jù)題意,分別求出成績在,的人數(shù),分別記作,;,,;用列舉法寫出總的基本事件,以及滿足條件的基本事件,利用古典概型可得結(jié)果.
(1)根據(jù)頻率分布直方圖,由頻率之和為1可得,
,解得;
(2)根據(jù)頻率分布直方圖可得,20名學(xué)生成績的平均數(shù)為:;
(3)根據(jù)題意,可得成績在的學(xué)生為人,記作,;
其中成績在的有:人,記作,,;
從這5人中任取2人,包含:,,,,,,,,,共個基本事件;
此2人的成績不都在中,包含,,,,,,共7個基本事件;
因此2人的成績不都在中的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,分別為,的中點,,如圖1.以為折痕將折起,使點到達(dá)點的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面;
(2)若平面平面,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為
(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間.
(2)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):
房屋面積() | 115 | 110 | 80 | 135 | 105 |
銷售價格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數(shù)據(jù)對應(yīng)的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計當(dāng)房屋面積為150時的銷售價格.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)是奇函數(shù).
(1)求函數(shù)的值域;
(2)若在上單調(diào)遞減,根據(jù)單調(diào)性定義求實數(shù)b的取值范圍;
(3)在(2)的條件下,若方程在區(qū)間上有且僅有兩個不同的根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.經(jīng)過任意三點有且只有一個平面.
B.過點有且僅有一條直線與異面直線垂直.
C.一條直線與一個平面平行,它就和這個平面內(nèi)的任意一條直線平行.
D.面與平面相交,則公共點個數(shù)為有限個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑,兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com