已知函數(shù)f(x)=sincos+sin2 (其中ω>0,0<φ<).其圖象的兩個相鄰對稱中心的距離為,且過點.
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a=,S△ABC=2,角C為銳角.且滿足f=,求c的值.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練3-x6練習卷(解析版) 題型:選擇題
設函數(shù)f(x)=sin ,則下列結論正確的是( ).
①f(x)的圖象關于直線x=對稱;②f(x)的圖象關于點對稱;③f(x)的圖象向左平移個單位,得到一個偶函數(shù)的圖象;④f(x)的最小正周期為π,且在上為增函數(shù)
A.①③ B.②④ C.①③④ D.③
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練3-x1練習卷(解析版) 題型:選擇題
設函數(shù)f(x)的零點為x1,函數(shù)g(x)=4x+2x-2的零點為x2,若|x1-x2|>,則f(x)可以是( ).
A.f(x)=2x- B.f(x)=-x2+x-
C.f(x)=1-10x D.f(x)=ln (8x-2)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練3-d4練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=sin +2cos2x-1(x∈R).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點,b,a,c成等差數(shù)列,且·=9,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練2-2練習卷(解析版) 題型:解答題
現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分,該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(1)求該射手恰好命中兩次的概率;
(2)求該射手的總得分X的分布列及數(shù)學期望E(X);
(3)求該射手向甲靶射擊比向乙靶射擊多擊中一次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練2-1練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=sin ωx-sin2+(ω>0)的最小正周期為π.
(1)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當x∈時,求函數(shù)f(x)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-9練習卷(解析版) 題型:選擇題
設F1,F2分別是雙曲線=1(a>0,b>0)的左、右焦點,若雙曲線右支上存在一點P,使(+)·=0,O為坐標原點,且=||,則雙曲線的離心率為( ).
A. +1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-9練習卷(解析版) 題型:選擇題
已知橢圓=1(a>b>0)的一個焦點為F,若橢圓上存在一個P點,滿足以橢圓短軸為直徑的圓與線段PF相切于該線段的中點,則該橢圓的離心率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-6練習卷(解析版) 題型:選擇題
已知等差數(shù)列{an}滿足2a2-+2a12=0,且{bn}是等比數(shù)列,若b7=a7,則b5b9=( )
A.2 B.4 C.8 D.16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com