f(x)=,則f(1)+f(2)+f()+f(3)+f()+f(4)+f()等于
A.3
B.
C.4
D.
科目:高中數(shù)學 來源:導學大課堂必修一數(shù)學蘇教版 蘇教版 題型:022
已知函數(shù)f(x)=,則f(1)+f(2)+f(3)+f(4)+f()+f()+f()=________.
查看答案和解析>>
科目:高中數(shù)學 來源:設計必修一數(shù)學(人教A版) 人教A版 題型:013
f(x)=,則f(1)+f(2)+f()+f(3)+f()+f(4)+f()等于
A.3
B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽商城高中2010-2011學年高一第一次月考數(shù)學試題 題型:013
已知函數(shù)f(x)=,則f(1)-f(3)=
-2
7
27
-7
查看答案和解析>>
科目:高中數(shù)學 來源:山西省忻州一中2012屆高三上學期期中考試數(shù)學文科試題 題型:013
設f(x)=,則f()+f(2x-1)的定義域為
[-3,3]
[-3,3)
[-1,]∪[,2]
[-1,]∪(,2)
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆黑龍江虎林高中高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結合構造函數(shù)和導數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com