【題目】為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下列表:


喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生


5


女生

10



合計(jì)



50

已知在全班50人中隨機(jī)抽取1人,抽到喜愛(ài)打籃球的學(xué)生的概率為

1)請(qǐng)將上表補(bǔ)充完整(不用寫計(jì)算過(guò)程);

2)能否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中

【答案】(1)詳見(jiàn)解析;(2)有的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān).

【解析】試題分析:(1)根據(jù)在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為,可得喜愛(ài)打籃球的學(xué)生,即可得到列聯(lián)表;(2)利用公式求得,與臨界值比較,即可得到結(jié)論

試題解析:(1) 已知在全班50人中隨機(jī)抽取1人,抽到喜愛(ài)打籃球的學(xué)生的概率為

列聯(lián)表如下:


喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生

20

5

25

女生

10

15

25

合計(jì)

30

20

50

2

99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2S△ABC·.

(1)求角B的大;

(2)若b=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明

理由;

(3)當(dāng)時(shí).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的甲、乙兩個(gè)車間的名工人進(jìn)行了勞動(dòng)技能大比拼,規(guī)定:技能成績(jī)大于或等于分為優(yōu)秀, 分以下為非優(yōu)秀,統(tǒng)計(jì)成成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)車間工人中隨機(jī)抽取人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計(jì)

甲車間

乙車間

合計(jì)

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認(rèn)為“成績(jī)與車間有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.

(1)將圓C和直線l的方程化為極坐標(biāo)方程;

(2)P是l上的點(diǎn),射線OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2,當(dāng)點(diǎn)P在l上移動(dòng)時(shí),求點(diǎn)Q軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].

(1)求m的值;

(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)時(shí)取得極小值.

1)求實(shí)數(shù)的值;

2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?/span>?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記表示中的最大值,如,已知函數(shù).

1)求函數(shù)上的值域;

2)試探討是否存在實(shí)數(shù), 使得對(duì)恒成立?若存在,求的取值范圍;

若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=,其中a∈R.

(I)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;

(II)求f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案